Introduction The purpose of this study was to determine the effect of growth restriction on the biological regulation of physical activity. Methods Using a cross-fostering, protein-restricted nutritive model, mice were growth-restricted during either gestation (GUN; N = 3 litters) or postnatal life (PUN; N = 3 litters). At 21 d of age, all mice pups were weaned and fed a nonrestrictive healthy diet for the remainder of the study. At 45 d of age, mice were individually housed in cages with free moving running wheels to assess physical activity engagement. At day 70, mice were euthanized, and the nucleus accumbens was analyzed for dopamine receptor 1 expression. Skeletal muscle fiber type and cross-sectional area of the soleus, extensor digitorom longus, and diaphragm were analyzed by immunohistochemistry. The soleus from the other hindleg was evaluated for calsequestrin 1 and annexin A6 expression. Results The PUN female mice (15,365 ± 8844 revolutions per day) had a reduction (P = 0.0221) in wheel revolutions per day as compared with the GUN (38,667 ± 8648 revolutions per day) and CON females (36,421.0 ± 6700 revolutions per day). The PUN female mice also expressed significantly higher dopamine receptor 1 compared (P = 0.0247) to the other groups. The PUN female soleus had a higher expression of calsequestrin 1, along with more type IIb fibers (P = 0.0398). Conclusions Growth restriction during lactation reduced physical activity in female mice by reducing the central drive to be active and displayed a more fatigable skeletal muscle phenotype.
Growth restriction caused by postnatal undernutrition increases risk for cardiovascular disease in adulthood with the potential to induce arrhythmogenesis. Thus, the purpose was to determine if undernutrition during development produced arrhythmias at rest and when stressed with dobutamine in adulthood. Mouse dams were fed (CON: 20% protein), or low-protein (LP: 8%) diet before mating. A cross-fostering model was used where pups nursed by dams fed LP diet in early [EUN; postnatal day (PN) 1-10], late (LUN; PN11-21) and whole (PUN; 1-21) phases of postnatal life. Weaned pups were switched to CON diets for the remainder of the study (PN80). At PN80, body composition (magnetic resonance imaging), and quantitative electrocardiogram (ECG) measurements were obtained under 1% isoflurane anesthesia. After baseline ECG, an IP injection (1.5 µg/g body weight) of dobutamine was administered and ECG repeated. Undernutrition significantly (P<0.05) reduced body weight in LUN (22.68±0.88 g) and PUN (19.96±0.32 g) but not in CON (25.05±0.96 g) and EUN (25.28±0.9207 g). Fat mass decreased in all groups compared with controls (CON: 8.00±1.2 g, EUN: 6.32±0.65 g, LUN: 5.11±1.1 g, PUN: 3.90±0.25 g). Lean mass was only significantly reduced in PUN (CON: 17.99±0.26 g, EUN: 17.78±0.39 g, LUN: 17.34±0.33 g, PUN: 15.85±0.28 g). Absolute heart weights were significantly less from CON, with PUN having the smallest. ECG showed LUN had occurrences of atrial fibrillation; EUN had increases of 1st degree atrioventricular block upon stimulation, and PUN had increased risk for ventricular depolarization arrhythmias. CON did not display arrhythmias. Undernutrition in early life resulted in ventricular arrhythmias under stressed conditions, but undernutrition occurring in later postnatal life there is an increased incidence of atrial arrhythmias.
Undernutrition during early life causes chronic disease with specific impairments to the heart and skeletal muscle. The purpose of this study was to determine the effects of early life undernutrition on adult exercise capacity as a result of cardiac and skeletal muscle function. Pups were undernourished during gestation (GUN) or lactation (PUN) using a cross-fostering nutritive mouse model. At postnatal day 21, all mice were weaned and refed a control diet. At postnatal day 67, mice performed a maximal treadmill test. Echocardiography and Doppler blood flow analysis was performed at postnatal day 72, following which skeletal muscle cross-sectional area (CSA) and fiber type were determined. Maximal running capacity was reduced (diet: P = 0.0002) in GUN and PUN mice. Left ventricular mass (diet: P = 0.03) and posterior wall thickness during systole (diet × sex: P = 0.03) of GUN and PUN mice was reduced, causing PUN mice to have reduced (diet: P = 0.04) stroke volume. Heart rate of GUN mice showed a trend (diet: P = 0.07) towards greater resting values than other groups. PUN mice had greater CSA of soleus fibers. PUN had a reduced (diet: P = 0.03) proportion of type-IIX fibers in the extensor digitorum longus (EDL) and a greater (diet: P = 0.008) percentage of type-IIB fibers in the EDL. In conclusion, gestational and postnatal undernourishment impairs exercise capacity.
BACKGROUND: Extensive evidence from single-center studies indicates that a subset of patients with chronic advanced heart failure (HF) undergoing left ventricular assist device (LVAD) support show significantly improved heart function and reverse structural remodeling (ie, termed “responders”). Furthermore, we recently published a multicenter prospective study, RESTAGE-HF (Remission from Stage D Heart Failure), demonstrating that LVAD support combined with standard HF medications induced remarkable cardiac structural and functional improvement, leading to high rates of LVAD weaning and excellent long-term outcomes. This intriguing phenomenon provides great translational and clinical promise, although the underlying molecular mechanisms driving this recovery are largely unknown. METHODS: To identify changes in signaling pathways operative in the normal and failing human heart and to molecularly characterize patients who respond favorably to LVAD unloading, we performed global RNA sequencing and phosphopeptide profiling of left ventricular tissue from 93 patients with HF undergoing LVAD implantation (25 responders and 68 nonresponders) and 12 nonfailing donor hearts. Patients were prospectively monitored through echocardiography to characterize their myocardial structure and function and identify responders and nonresponders. RESULTS: These analyses identified 1341 transcripts and 288 phosphopeptides that are differentially regulated in cardiac tissue from nonfailing control samples and patients with HF. In addition, these unbiased molecular profiles identified a unique signature of 29 transcripts and 93 phosphopeptides in patients with HF that distinguished responders after LVAD unloading. Further analyses of these macromolecules highlighted differential regulation in 2 key pathways: cell cycle regulation and extracellular matrix/focal adhesions. CONCLUSIONS: This is the first study to characterize changes in the nonfailing and failing human heart by integrating multiple -omics platforms to identify molecular indices defining patients capable of myocardial recovery. These findings may guide patient selection for advanced HF therapies and identify new HF therapeutic targets.
Postnatal growth restriction (PGR) increases the risk for cardiovascular disease (CVD) in adulthood, yet there is minimal mechanistic rationale for the observed pathology. The purpose of this study was to identify proteomic differences in hearts of growth-restricted and unrestricted mice, and propose mechanisms related to impairment in adulthood. Friend leukemia virus B (FVB) mouse dams were fed a control (CON: 20% protein), or low-protein (LP: 8% protein) isocaloric diet 2 weeks before mating. LP dams produce 20% less milk, inducing growth restriction. At birth (postnatal; PN1), pups born to dams fed the CON diet were switched to LP dams (PGR group) or a different CON dam. At PN21, a sub-cohort of CON (n = 3 males; n = 3 females) and PGR (n = 3 males; n = 3 females) were euthanized and their proteome analyzed by two-dimensional differential in-gel electrophoresis (2D DIGE) and mass spectroscopy. Western blotting and silver nitrate staining confirmed 2D DIGE results. Littermates (CON: n = 4 males and n = 4 females; PGR: n = 4 males and n = 4 females) were weaned to the CON diet. At PN77, echocardiography measured cardiac function. At PN80, hearts were removed for western blotting to determine if differences persisted into adulthood. 2D DIGE and western blot confirmation indicated PGR had reductions in p57kip2, Titin (Ttn), and Collagen (Col). At PN77, PGR had impaired cardiac function as measured by echocardiography. At PN80, western blots of p57kip2 showed protein abundance recovered from PN21. PN80 silver staining of large molecular weight proteins (Ttn and Col) was reduced in PGR. PGR reduces cell cycle activity at PN21, which is recovered in adulthood. However, collagen fiber networks are altered into adulthood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.