Manufacturing processes (e.g., forging, rolling, extrusion, and forming) rely on heat to reduce the forces associated with fabricating parts. However, due to the negative implications associated with hot working, another more efficient means of applying energy is desired. This paper investigates material property changes of various metals (aluminum, copper, iron, and titanium based alloys) in response to the flow of electricity. Theory involving electromigration and electroplasticity is examined and the implications thereof are analyzed. It is shown that, using electrical current, flow stresses are reduced, resulting in a lower specific energy for open-die forging. It is also shown that an applied electrical current increases the forgeability of materials, allowing greater deformation prior to cracking. Moreover, the changes caused by the flow of electricity are significantly greater than those explained by resistive heating. Additionally, elastic recovery is decreased when using electrical flow during deformation. Finally, for most materials, these effects were dependent on strain rate. Overall, this work demonstrates that substantial increases in the forgeability of metals are achieved by deforming the material while applying an electrical current. These improvements exceed those achieved through comparable increases in workpiece temperature and demonstrate that this method provides a viable alternative to warm/hot working.
Few materials have been identified as high-performance transparent conductors in the visible regime (400–700 nm). Even fewer conductors are known to be transparent in ultraviolet (UV) spectrum, especially at wavelengths below 320 nm. Doped wide-bandgap semiconductors employed currently as UV transparent conductors have insufficient electrical conductivities, posing a significant challenge for achieving low resistance electrodes. Here, we propose SrNbO3 as an alternative transparent conductor material with excellent performance not only in the visible, but also in the UV spectrum. The high transparency to UV light originates from energetic isolation of the conduction band, which shifts the absorption edge into the UV regime. The standard figure of merit measured for SrNbO3 in the UV spectral range of 260–320 nm is on par with indium tin oxide in the visible, making SrNbO3 an ideal electrode material in high-performance UV light emitting diodes relevant in sanitation application, food packaging, UV photochemotherapy, and biomolecule sensing.
Driven by an ever-expanding interest in new material systems with new functionality, the growth of atomic-scale electronic materials by molecular beam epitaxy (MBE) has evolved continuously since the 1950s. Here, a new MBE technique called hybrid-MBE (hMBE) is reviewed that has been proven a powerful approach for tackling the challenge of growing high-quality, multicomponent complex oxides, specifically the ABO 3 perovskites. The goal of this work is to (1) discuss the development of hMBE in a historical context, (2) review the advantageous surface kinetics and chemistry that enable the self-regulated growth of ABO 3 perovskites, (3) layout the key components and technical challenges associated with hMBE, (4) review the status of the field and the materials that have been successfully grown by hMBE which demonstrate its general applicability, and (5) discuss the future of hMBE in regards to technical innovations and expansion into new material classes, which are aimed at expanding into industrial realm and at tackling new scientific endeavors.
We present data for epitaxial thin films of the prototypical entropy-stabilized oxide (ESO), Mg 0.2 Ni 0.2 Co 0.2 Cu 0.2 Zn 0.2 O, that reveals a systematic trend in lattice parameter and properties as a function of substrate temperature during film growth with negligible changes in microstructure. A larger net Co valence in films grown at substrate temperatures below 350 °C results in a smaller lattice parameter, a smaller optical band gap, and stronger magnetic exchange bias. Observation of this phenomena suggests a complex interplay between thermodynamics and kinetics during ESO synthesis; specifically thermal history, oxygen chemical potential, and entropy. In addition to the compositional degrees of freedom available to ESO systems, subtle nuances in atomic structure at constant metallic element proportions can strongly influence properties, simultaneously complicating physical characterization and providing opportunities for property tuning and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.