MnBi2Te4 has recently been established as an intrinsic antiferromagnetic (AFM) topological insulator and predicted to be an ideal platform to realize quantum anomalous Hall (QAH) insulator and axion insulator states. We performed comprehensive studies on the structure, nontrivial surface state and magnetotransport properties of this material. Our results reveal an intrinsic anomalous Hall effect arising from a non-collinear spin structure for the magnetic field parallel to the c-axis. We also observed remarkable negative magnetoresistance under arbitrary field orientation below and above the Neel temperature (TN), providing clear evidence for strong spin fluctuation-driven spin scattering in both the AFM and paramagnetic states. Further, we found that the nontrivial surface state opens a large gap (~85 meV) even at temperatures far above TN = 25K. These findings demonstrate that the bulk band structure of MnBi2Te4 is strongly coupled to the magnetic structure and that a net Berry curvature in momentum space can be created in a canted AFM state. In
Dilute magnetic semiconductors (DMS), achieved through substitutional doping of spin-polarized transition metals into semiconducting systems, enable experimental modulation of spin dynamics in ways that hold great promise for novel magneto-electric or magneto-optical devices, especially for two-dimensional (2D) systems such as transition metal dichalcogenides that accentuate interactions and activate valley degrees of freedom. Practical applications of 2D magnetism will likely require room-temperature operation, air stability, and (for magnetic semiconductors) the ability to achieve optimal doping levels without dopant aggregation. Here, room-temperature ferromagnetic order obtained in semiconducting vanadium-doped tungsten disulfide monolayers produced by a reliable single-step film sulfidation method across an exceptionally wide range of vanadium concentrations, up to 12 at% with minimal dopant aggregation, is described. These monolayers develop p-type transport as a function of vanadium incorporation and rapidly reach ambipolarity. Ferromagnetism peaks at an intermediate vanadium concentration of˜2 at% and decreases for higher concentrations, which is consistent with quenching due to orbital hybridization at closer vanadium-vanadium spacings, as supported by transmission electron microscopy, magnetometry, and first-principles calculations. Room-temperature 2D-DMS provide a new component to expand the functional scope of van der Waals heterostructures and bring semiconducting magnetic 2D heterostructures into the realm of practical application.
Weyl semimetals exhibit unusual surface states and anomalous transport phenomena. It is hard to manipulate the band structure topology of specific Weyl materials. Topological transport phenomena usually appear at very low temperatures, which sets challenges for applications. In this work, we demonstrate the band topology modification via a weak magnetic field in a ferromagnetic Weyl semimetal candidate, Co2MnAl, at room temperature. We observe a tunable, giant anomalous Hall effect (AHE) induced by the transition involving Weyl points and nodal rings. The AHE conductivity is as large as that of a 3D quantum AHE, with the Hall angle (ΘH) reaching a record value ($$\tan {\Theta }^{H}=0.21$$ tan Θ H = 0.21 ) at the room temperature among magnetic conductors. Furthermore, we propose a material recipe to generate large AHE by gaping nodal rings without requiring Weyl points. Our work reveals an intrinsically magnetic platform to explore the interplay between magnetic dynamics and topological physics for developing spintronic devices.
We present data for epitaxial thin films of the prototypical entropy-stabilized oxide (ESO), Mg 0.2 Ni 0.2 Co 0.2 Cu 0.2 Zn 0.2 O, that reveals a systematic trend in lattice parameter and properties as a function of substrate temperature during film growth with negligible changes in microstructure. A larger net Co valence in films grown at substrate temperatures below 350 °C results in a smaller lattice parameter, a smaller optical band gap, and stronger magnetic exchange bias. Observation of this phenomena suggests a complex interplay between thermodynamics and kinetics during ESO synthesis; specifically thermal history, oxygen chemical potential, and entropy. In addition to the compositional degrees of freedom available to ESO systems, subtle nuances in atomic structure at constant metallic element proportions can strongly influence properties, simultaneously complicating physical characterization and providing opportunities for property tuning and development.
Engineering atomic-scale defects is crucial for realizing wafer-scale, single-crystalline transition metal dichalcogenide monolayers for electronic devices. However, connecting atomic-scale defects to larger morphologies poses a significant challenge. Using electron microscopy and ReaxFF reactive force field-based molecular dynamics simulations, we provide insights into WS2 crystal growth mechanisms, providing a direct link between synthetic conditions and microstructure. Dark-field TEM imaging of coalesced monolayer WS2 films illuminates defect arrays that atomic-resolution STEM imaging identifies as translational grain boundaries. Electron diffraction and high-resolution imaging reveal that the films have nearly a single orientation with imperfectly stitched domains that tilt out-of-plane when released from the substrate. Imaging and ReaxFF simulations uncover two types of translational mismatch, and we discuss their origin related to relatively fast growth rates. Statistical analysis of >1300 facets demonstrates that microstructural features are constructed from nanometer-scale building blocks, describing the system across sub-Ångstrom to multimicrometer length scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.