Liquid crystals of anisotropic colloids are of great significance in the preparation of their ordered macroscopic materials, for example, in the cases of carbon nanotubes and graphene. Here, we report a facile and scalable spinning process to prepare neat "core-shell" structured graphene aerogel fibers and three-dimensional cylinders with aligned pores from the flowing liquid crystalline graphene oxide (GO) gels. The uniform alignment of graphene sheets, inheriting the lamellar orders from GO liquid crystals, offers the porous fibers high specific tensile strength (188 kN m kg(-1)) and the porous cylinders high compression modulus (3.3 MPa). The porous graphene fibers have high specific surface area up to 884 m(2) g(-1) due to their interconnected pores and exhibit fine electrical conductivity (2.6 × 10(3) to 4.9 × 10(3) S m(-1)) in the wide temperature range of 5-300 K. The decreasing conductivity with decreasing temperature illustrates a typical semiconducting behavior, and the 3D interconnected network of 2D graphene sheets determines a dual 2D and 3D hopping conduction mechanism. The strong mechanical strength, high porosity, and fine electrical conductivity enable this novel material of ordered graphene aerogels to be greatly useful in versatile catalysts, supercapacitors, flexible batteries and cells, lightweight conductive fibers, and functional textiles.
Ultraviolet (UV) radiation has a variety of impacts including the health of humans, the production of crops, and the lifetime of buildings. Based on the photovoltaic effect, self-powered UV photodetectors can measure and monitor UV radiation without any power consumption. However, the current low photoelectric performance of these detectors has hindered their practical use. In our study, a super-high-performance self-powered UV photodetector based on a GaN/Sn:Ga 2 O 3 pn junction was generated by depositing a Sn-doped n-type Ga 2 O 3 thin film onto a p-type GaN thick film. The responsivity at 254 nm reached up to 3.05 A/W without a power supply and had a high UV/visible rejection ratio of R 254 nm /R 400 nm = 5.9 × 10 3 and an ideal detectivity at 1.69 × 10 13 cm•Hz 1/2 •W −1 , which is well beyond the level of previous self-powered UV photodetectors. Moreover, our device also has a low dark current (1.8 × 10 −11 A), a high I photo /I dark ratio (∼10 4 ), and a fast photoresponse time of 18 ms without bias. These outstanding performance results are attributed to the rapid separation of photogenerated electron−hole pairs driven by a high built-in electric field in the interface depletion region of the GaN/ Sn:Ga 2 O 3 pn junction. Our results provide an improved and easy route to constructing high-performance self-powered UV photodetectors that can potentially replace traditional high-energy-consuming UV detection systems. KEYWORDS: self-powered, ultraviolet photodetector, GaN/Sn:Ga 2 O 3 pn junction, superhigh photoresponsivity, 3.05 A/W, potential barrier U ltraviolet radiation has a significant impact on humankind. Some benefits are UV's ability to facilitate the synthesis of vitamin D, kill germs, and treat or prevent rickets when our skin is exposed to moderate UV light. 1 However, it can cause cataracts and skin cancer and accelerate the aging process due to an excessive amount of UV radiation. 1,2 Additionally, UV radiation strongly affects the production of crops and the lifetime of buildings. Fortunately, UV radiation can be measured and monitored using semiconductor UV photodetectors based on Einstein's photoelectric effect, which transforms UV radiation to measurable electronic signals. After decades of steady development, modern UV photodetectors, with high performances in photoresponsivity, signal-to-noise ratios, stability, and speed, have gained interest recently for their applications in environmental monitoring, advanced communications, air purification, leak detection, space research, etc. 3−13 Unfortunately, to acquire reasonable detectivity, an external electric field is applied to photodetectors to separate the photogenerated electron−hole pairs. 5−13 Therefore, external power sources are generally necessary. This makes photodetectors overall uneconomical and complex. On the contrary, self-powered photodetectors can help solve the energy issues and have attracted significant attention. 14−19 Compared to traditional photodetectors, self-powered structures, based on the photovoltaic effect su...
A solar-blind photodetector based on β-GaO/NSTO (NSTO = Nb:SrTiO) heterojunctions were fabricated for the first time, and its photoelectric properties were investigated. The device presents a typical positive rectification in the dark, while under 254 nm UV light illumination, it shows a negative rectification, which might be caused by the generation of photoinduced electron-hole pairs in the β-GaO film layer. With zero bias, that is, zero power consumption, the photodetector shows a fast photoresponse time (decay time τ = 0.07 s) and the ratio I/I ≈ 20 under 254 nm light illumination with a light intensity of 45 μW/cm. Such behaviors are attributed to the separation of photogenerated electron-hole pairs driven by the built-in electric field in the depletion region of β-GaO and the NSTO interface, and the subsequent transport toward corresponding electrodes. The photocurrent increases linearly with increasing the light intensity and applied bias, while the response time decreases with the increase of the light intensity. Under -10 V bias and 45 μW/cm of 254 nm light illumination, the photodetector exhibits a responsivity R of 43.31 A/W and an external quantum efficiency of 2.1 × 10 %. The photo-to-electric conversion mechanism in the β-GaO/NSTO heterojunction photodetector is explained in detail by energy band diagrams. The results strongly suggest that a photodetector based on β-GaO thin-film heterojunction structure can be practically used to detect weak solar-blind signals because of its high photoconductive gain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.