Aim To test hypotheses that: (1) late Pleistocene low sea-level shorelines (rather than current shorelines) define patterns of genetic variation among mammals on oceanic Philippine islands; (2) species-specific ecological attributes, especially forest fidelity and vagility, determine the extent to which common genetic patterns are exhibited among a set of species; (3) populations show reduced within-population variation on small, isolated oceanic islands; (4) populations tend to be most highly differentiated on small, isolated islands; and (5) to assess the extent to which patterns of genetic differentiation among multiple species are determined by interactions of ecological traits and geological/geographic conditions.Location The Philippine Islands, a large group of oceanic islands in Southeast (SE) Asia with unusually high levels of endemism among mammals.Methods Starch-gel electrophoresis of protein allozymes of six species of small fruit bats (Chiroptera, Pteropodidae) and one rodent (Rodentia, Muridae).Results Genetic distances between populations within all species are not correlated with distances between present-day shorelines, but are positively correlated with distances between shorelines during the last Pleistocene period of low sea level; relatively little intraspecific variation was found within these 'Pleistocene islands'. Island area and isolation of oceanic populations have only slight effects on standing genetic variation within populations, but populations on some isolated islands have heightened levels of genetic differentiation, and reduced levels of gene flow, relative to other islands. Species associated with disturbed habitat (all of which fly readily across open habitats) show more genetic variation within populations than species associated with primary rain forest (all of which avoid flying out from beneath forest canopy). Species associated with disturbed habitats, which tend to be widely distributed in SE Asia, also show higher rates of gene flow and less differentiation between populations than species associated with rain forest, which tend to be Philippine endemic species. One rain forest bat has levels of gene flow and heterozygosity similar to the forest-living rodent in our study. Main conclusionsThe maximum limits of Philippine islands that were reached during Pleistocene periods of low sea level define areas of relative genetic homogeneity, whereas even narrow sea channels between adjacent but permanently isolated oceanic islands are associated with most genetic variation within the species. Moreover, the distance between 'Pleistocene islands' is correlated with the extent of genetic distances within species. The structure of genetic variation is strongly influenced by the ecology of the species, predominantly as a result of their varying levels of vagility and ability to tolerate open (non-forested) habitat. Readily available information on ecology Journal of Biogeography (J. Biogeogr.) (2005) 32, 229-247 ª 2005 Blackwell Publishing Ltd www.blackwellpublishing.com/jbi INTR ODU...
This work explores the possibility that constraints on genetic variation guide host shifts and are responsible for the evolutionary conservatism of host affiliation in phytophagous insects. To this end, we used full-and half-sib breeding designs to screen two species of the North American beetle genus Ophraella for genetic variation in larval and adult feeding responses to several host plants of other species of Ophraella.All the plants are in the family Asteraceae. In 0. conferta, we observed effectively no feeding response, and hence no genetic variation in response, to three of five test plant species; only those plants related to the species' natural hosts evoked genetically variable responses. In 0. artemisiae, adults displayed genetic variation in response to a congener of the natural host, but not to two distantly related plants. However, significant variation among full-sib broods in larval feeding suggests the existence of nonadditive genetic variance in feeding response to all five species of test plants-although survival was very low on most of them. The results suggest that patterns of presence versus apparent absence of detectable genetic variation may be related to the chemical similarity of plants to the insects' natural hosts, but not evidently to the phylogenetic history of host affiliation within the genus. Almost all genetic correlations in responses to host plants were not significantly different from zero; the few significant correlations were positive, and negative correlations that might explain host specificity were not found. Our data do not explain why exclusive shifts to new hosts should occur, but the apparent lack of genetic variation in responses to some plants suggests that the direction of host shifts is genetically constrained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.