The vacuole/lysosome serves an important recycling function during starvation and senescence in eukaryotes via a process called autophagy. Here bulk cytosolic constituents and organelles become sequestered in specialized autophagic vesicles, which then deliver their cargo to the vacuole for degradation. In yeasts, genetic screens have identified two novel post-translational modification pathways remarkably similar to ubiquitination that are required for autophagy. From searches of the Arabidopsis genome, we have identified gene families encoding proteins related to both the APG8 and ؊12 polypeptide tags and orthologs for all components required for their attachment. A single APG7 gene encodes the ATP-dependent activating enzyme that initiates both conjugation pathways. Phenotypic analysis of an APG7 disruption indicates that it is not essential for normal growth and development in Arabidopsis. However, the apg7-1 mutant is hypersensitive to nutrient limiting conditions and displays premature leaf senescence. mRNAs for both APG7 and APG8 preferentially accumulate as leaves senesce, suggesting that both conjugation pathways are up-regulated during the senescence syndrome. These findings show that the APG8/12 conjugation pathways have been conserved in plants and may have important roles in autophagic recycling, especially during situations that require substantial nitrogen and carbon mobilization.Plants, like other organisms, have developed sophisticated mechanisms for recycling intracellular constituents during periods of growth, developmental remodeling, and nutrient-limiting conditions (1, 2). Especially critical is the degradation of protein, given the importance of reused amino acids to the nitrogen and carbon economy. Selective protein removal is accomplished primarily by the ubiquitin (Ub) 1 /26 S proteasome pathway (3, 4). In this pathway, the covalent attachment of Ubs is used as a signal to target specific proteins for degradation by the 26 S proteasome. Another major recycling system employs the vacuole, or its animal equivalent, the lysosome, as a lytic organelle (5, 6). Here cytosolic proteins are delivered to the vacuole and then degraded by a wide variety of vacuolar proteases. In some situations, entire organelles can be targets (7). Unlike the Ub/26 S proteasome pathway, vacuolar proteolysis is for the most part non-selective, thus targeting proteins indiscriminately. As a consequence protein turnover by the vacuole is thought to play less of a role in cellular regulation and a more prominent role under conditions when rapid remobilization and resorption of nutrients are crucial. These conditions include nutrient deprivation and environmental stress and developmental periods that require extensive cell and organ remodeling such as senescence and programmed cell death (5, 6).The vacuole degrades cytoplasm by three unique but overlapping mechanisms, chaperone-assisted import, microautophagy, and macroautophagy (6 -9). Chaperone-assisted import is activated during starvation; it employs Hsp70-related...
Small ubiquitin-like modifier (SUMO) is a member of the superfamily of ubiquitin-like polypeptides that become covalently attached to various intracellular target proteins as a way to alter their function, location, and/or half-life. Here we show that the SUMO conjugation system operates in plants through a characterization of the Arabidopsis SUMO pathway. An eight-gene family encoding the SUMO tag was discovered as were genes encoding the various enzymes required for SUMO processing, ligation, and release. A diverse array of conjugates could be detected, some of which appear to be SUMO isoform-specific. The levels of SUMO1 and -2 conjugates but not SUMO3 conjugates increased substantially following exposure of seedlings to stress conditions, including heat shock, H 2 O 2 , ethanol, and the amino acid analog canavanine. The heat-induced accumulation could be detected within 2 min from the start of a temperature upshift, suggesting that SUMO1/2 conjugation is one of the early plant responses to heat stress. Overexpression of SUMO2 enhanced both the steady state levels of SUMO2 conjugates under normal growth conditions and the subsequent heat shock-induced accumulation. This accumulation was dampened in an Arabidopsis line engineered for increased thermotolerance by overexpressing the cytosolic isoform of the HSP70 chaperonin. Taken together, the SUMO conjugation system appears to be a complex and functionally heterogeneous pathway for protein modification in plants with initial data indicating that one important function may be in stress protection and/or repair.Post-translational modifications of proteins play a critical role in most cellular processes through their unique ability to alter rapidly and reversibly the functions of preexisting proteins, multiprotein complexes, and intracellular structures. Although originally thought to be restricted to small molecules like phosphate and sugars, emerging data now show that several distinct types of polypeptide tags are important modifiers as well (1-4). These polypeptides become covalently attached to various intracellular targets via mechanistically similar ATPdependent reaction cascades involving activation (E1s) 1 and conjugation (E2s) enzymes. Sometimes an additional enzyme (E3s) also participates in target recognition and ligation. Ultimately, a protein conjugate is formed bearing the tag linked via an isopeptide bond between its C-terminal glycine and free lysyl ⑀-amino groups within the target. Depending on the tag and/or the target protein, the function, location, and/or half-life of the target can be affected. A family of tag-specific proteases also participates in each of the pathways. These proteases help generate the active form of the tag by removing extra residues that cap the C-terminal glycine of the polypeptide and/or are used to disassemble conjugates by cleaving the isopeptide bond between the tag and the target, thus releasing each in an unmodified form.The most pervasive and best understood tag is the 76-amino acid polypeptide ubiquitin (Ub) (5...
Phytochromes comprise a principal family of red/far-red light sensors in plants. Although phytochromes were thought originally to be confined to photosynthetic organisms, we have recently detected phytochrome-like proteins in two heterotrophic eubacteria, Deinococcus radiodurans and Pseudomonas aeruginosa. Here we show that these form part of a widespread family of bacteriophytochromes (BphPs) with homology to two-component sensor histidine kinases. Whereas plant phytochromes use phytochromobilin as the chromophore, BphPs assemble with biliverdin, an immediate breakdown product of haem, to generate photochromic kinases that are modulated by red and far-red light. In some cases, a unique haem oxygenase responsible for the synthesis of biliverdin is part of the BphP operon. Co-expression of this oxygenase with a BphP apoprotein and a haem source is sufficient to assemble holo-BphP in vivo. Both their presence in many diverse bacteria and their simplified assembly with biliverdin suggest that BphPs are the progenitors of phytochrome-type photoreceptors.
The ability of phytochromes (Phy) to act as photointerconvertible light switches in plants and microorganisms depends on key interactions between the bilin chromophore and the apoprotein that promote bilin attachment and photointerconversion between the spectrally distinct red light-absorbing Pr conformer and far red light-absorbing Pfr conformer. Using structurally guided site-directed mutagenesis combined with several spectroscopic methods, we examined the roles of conserved amino acids within the bilin-binding domain of Deinococcus radiodurans bacteriophytochrome with respect to chromophore ligation and Pr/Pfr photoconversion. Incorporation of biliverdin IX␣ (BV), its structure in the Pr state, and its ability to photoisomerize to the first photocycle intermediate are insensitive to most single mutations, implying that these properties are robust with respect to small structural/electrostatic alterations in the binding pocket. In contrast, photoconversion to Pfr is highly sensitive to the chromophore environment. Many of the variants form spectrally bleached Meta-type intermediates in red light that do not relax to Pfr. Particularly important are Asp-207 and His-260, which are invariant within the Phy superfamily and participate in a unique hydrogen bond matrix involving the A, B, and C pyrrole ring nitrogens of BV and their associated pyrrole water. Resonance Raman spectroscopy demonstrates that substitutions of these residues disrupt the Pr to Pfr protonation cycle of BV with the chromophore locked in a deprotonated Meta-R c -like photoconversion intermediate after red light irradiation. Collectively, the data show that a number of contacts contribute to the unique photochromicity of Phy-type photoreceptors. These include residues that fix the bilin in the pocket, coordinate the pyrrole water, and possibly promote the proton exchange cycle during photoconversion.The phytochrome (Phy) 5 superfamily encompasses a large and diverse set of photoreceptors present in the plant, fungal, and bacterial kingdoms where they play critical roles in various light-regulated processes (1-3). These processes range from the control of phototaxis, pigmentation, and photosynthetic potential in proteobacteria and cyanobacteria to seed germination, chloroplast development, shade avoidance, and flowering time in higher plants. Phys are unique among photoreceptors in being able to assume two stable, photointerconvertible conformers, designated Pr and Pfr based on their respective absorption maxima in the red and far-red spectral regions. By cycling between Pr and Pfr, Phys act as light-regulated switches in various photosensory cascades.Phys are homodimeric complexes with each polypeptide containing a single bilin (or linear tetrapyrrole) chromophore, which binds autocatalytically via a thioether linkage to a positionally conserved cysteine (1-3). The photosensing portion typically contains Per/Arndt/Sim (PAS) and cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) domains, which are essential for bilin binding and Pr assembly, and t...
Many aspects of plant photomorphogenesis are controlled by the phytochrome (Phy) family of bilin-containing photoreceptors that detect red and far-red light by photointerconversion between a dark-adapted Pr state and a photoactivated Pfr state. Whereas 3D models of prokaryotic Phys are available, models of their plant counterparts have remained elusive. Here, we present the crystal structure of the photosensing module (PSM) from a seed plant Phy in the Pr state using the PhyB isoform from Arabidopsis thaliana. The PhyB PSM crystallized as a head-to-head dimer with strong structural homology to its bacterial relatives, including a 5(Z)syn, 10(Z)syn, 15(Z)anti configuration of the phytochromobilin chromophore buried within the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain, and a well-ordered hairpin protruding from the Phy-specific domain toward the bilin pocket. However, its Per/Arnt/Sim (PAS) domain, knot region, and helical spine show distinct structural differences potentially important to signaling. Included is an elongated helical spine, an extended β-sheet connecting the GAF domain and hairpin stem, and unique interactions between the region upstream of the PAS domain knot and the bilin A and B pyrrole rings. Comparisons of this structure with those from bacterial Phys combined with mutagenic studies support a toggle model for photoconversion that engages multiple features within the PSM to stabilize the Pr and Pfr end states after rotation of the D pyrrole ring. Taken together, this Arabidopsis PhyB structure should enable molecular insights into plant Phy signaling and provide an essential scaffold to redesign their activities for agricultural benefit and as optogenetic reagents.G iven the importance of sunlight to their survival and growth, plants have adopted a collection of photoreceptors and interconnected signaling cascades to optimize their photosynthetic potential and synchronize their lifecycles with circadian and seasonal rhythms. Chief among these are the phytochromes (Phys), a family of bilin (or open-chain tetrapyrrole)-containing red/far-red light-absorbing photoreceptors that provides spatial and time-dependent information by sensing the fluence rate, direction, duration, and color of a plant's light environment (1, 2). This information then regulates nearly all aspects of plant growth and development from seed germination to senescence. Notably, seed plants typically express three Phy isoforms (PhyA, PhyB, and PhyC) that control distinct and overlapping photoresponses, with PhyB having a dominant role in green tissues (2, 3).Phys are homodimers with each sister polypeptide divided into an N-terminal photosensory module (PSM) that absorbs light followed by an output module (OPM) that promotes dimerization and presumably, relays the light signals (1, 4). The PSM sequentially contains a Per/Arnt/Sim (PAS) domain of unknown function, a cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain that cradles the bilin, and a Phy-specific (PHY) domain that stabilizes the photoactivated ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.