Zinc-finger nucleases (ZFNs) are powerful tools for producing gene knockouts (KOs) with high efficiency. Whereas ZFN-mediated gene disruption has been demonstrated in laboratory animals such as mice, rats, and fruit flies, ZFNs have not been used to disrupt an endogenous gene in any large domestic species. Here we used ZFNs to induce a biallelic knockout of the porcine α1,3-galactosyltransferase (
GGTA1
) gene. Primary porcine fibroblasts were treated with ZFNs designed against the region coding for the catalytic core of
GGTA1
, resulting in biallelic knockout of ∼1% of ZFN-treated cells. A galactose (Gal) epitope counter-selected population of these cells was used in somatic cell nuclear transfer (SCNT). Of the resulting six fetuses, all completely lacked Gal epitopes and were phenotypically indistinguishable from the starting donor cell population, illustrating that ZFN-mediated genetic modification did not interfere with the cloning process. Neither off-target cleavage events nor integration of the ZFN-coding plasmid was detected. The
GGTA1
-KO phenotype was confirmed by a complement lysis assay that demonstrated protection of
GGTA1
-KO fibroblasts relative to wild-type cells. Cells from
GGTA1
-KO fetuses and pooled, transfected cells were used to produce live offspring via SCNT. This study reports the production of cloned pigs carrying a biallelic ZFN-induced knockout of an endogenous gene. These findings open a unique avenue toward the creation of gene KO pigs, which could benefit both agriculture and biomedicine.
The success of somatic nuclear transfer critically depends on the cell cycle stage of the donor nucleus and the recipient cytoplast. In this study we tested serum deprivation as well as two reversible cell cycle inhibitors, aphidicolin and butyrolactone I, for their ability to synchronize porcine fetal fibroblasts at either G0 stage or G1/S or G2/M transition. The synchronization efficiency of the various protocols was determined by fluorescence-activated cell sorting (FACS), cell proliferation assays, and semiquantitative multiplex reverse transcription-polymerase chain reaction detection of the cell cycle-regulated porcine Polo-like kinase mRNA (Plk-p). FACS measurements revealed that 66.6-73.3% of the porcine fetal fibroblasts were in G0/G1 stage (2C DNA content) in serum-supplemented medium. Short periods of 24-72 h of serum deprivation significantly increased the proportion of cells at G0/G1 phase to 77.9-80.2%, and mitotic activity had already terminated after 48 h. Prolonged culture in serum-deprived medium induced massive DNA fragmentation. Aphidicolin treatment led to an accumulation of 81.9 +/- 4.9% of cells at the G1/S transition. Butyrolactone I arrested 81.0 +/- 5.8% of the cells at the end of G1 stage and 37.0 +/- 6.8% at the G2/M transition. The effects of both chemical inhibitors were fully reversible, and their removal led to a rapid progression in the cell cycle. The measurement of Plk-p expression allowed discrimination between the presumptive G0 phase induced by serum deprivation and the G1/S transition arrest achieved by chemical inhibitors. These data indicate that porcine fetal fibroblasts can be effectively synchronized at various cell cycle stages without compromising their proliferation capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.