• Rap1 and its effector RIAM are required for integrinmediated T-cell adhesion and homing to lymph nodes, but not for T-cell development.• RIAM regulates the activation of lymphocyte functionassociated antigen 1 and very late antigen 4 on lymphocytes, but not aIIbb3 on platelets.Regulation of integrins is critical for lymphocyte adhesion to endothelium and trafficking through secondary lymphoid organs. Inside-out signaling to integrins is mediated by the small GTPase Rap1. Two effectors of Rap1 regulate integrins, RapL and Rap1 interacting adaptor molecule (RIAM). Using mice conditionally deficient in both Rap1a and Rap1b and mice null for RIAM, we show that the Rap1/RIAM module is not required for T-or B-cell development but is essential for efficient adhesion to intercellular adhesion molecule (ICAM) 1 and vascular cell adhesion molecule (VCAM) 1 and for proper trafficking of lymphocytes to secondary lymphoid organs. Interestingly, in RIAM-deficient mice, whereas peripheral lymph nodes (pLNs) were depleted of both B and T cells and recirculating B cells were diminished in the bone barrow (BM), the spleen was hypercellular, albeit with a relative deficiency of marginal zone B cells. The abnormality in lymphocyte trafficking was accompanied by defective humoral immunity to T-cell-dependent antigens. Platelet function was intact in RIAM-deficient animals. These in vivo results confirm a role for RIAM in the regulation of some, but not all, leukocyte integrins and suggest that RIAM-regulated integrin activation is required for trafficking of lymphocytes from blood into pLNs and BM, where relatively high shear forces exist in high endothelial venules and sinusoids, respectively. (Blood. 2015;126(25):2695-2703
Rap1 is a small GTPase that modulates adhesion of T cells by regulating inside-out signaling through LFA-1. The bulk of Rap1 is expressed in a GDP-bound state on intracellular vesicles. Exocytosis of these vesicles delivers Rap1 to the plasma membrane, where it becomes activated. We report here that phospholipase D1 (PLD1) is expressed on the same vesicular compartment in T cells as Rap1 and is translocated to the plasma membrane along with Rap1. Moreover, PLD activity is required for both translocation and activation of Rap1. Increased T-cell adhesion in response to stimulation of the antigen receptor depended on PLD1. C3G, a Rap1 guanine nucleotide exchange factor located in the cytosol of resting cells, translocated to the plasma membranes of stimulated T cells. Our data support a model whereby PLD1 regulates Rap1 activity by controlling exocytosis of a stored, vesicular pool of Rap1 that can be activated by C3G upon delivery to the plasma membrane.
Inotuzumab ozogamicin (InO) is a recently US Food and Drug Administration–approved antibody–drug conjugate for the treatment of relapsed/refractory B-cell acute lymphoblastic leukemia (ALL). InO consists of a CD22-targeting immunoglobulin G4 humanized monoclonal antibody conjugated to calicheamicin. Although initially developed for the treatment of non-Hodgkin lymphoma (NHL) because of activity in preclinical models and high response rates in indolent lymphomas, a phase 3 trial was negative and further development focused on CD22+ ALL. Although results in NHL were disappointing, parallel testing in early-phase trials of CD22+ ALL demonstrated feasibility and efficacy. Subsequently, the randomized phase 3 Study Of Inotuzumab Ozogamicin Versus Investigator's Choice Of Chemotherapy In Patients With Relapsed Or Refractory Acute Lymphoblastic Leukemia trial showed that InO was superior to standard of care regimens with a significantly improved complete remission (CR) rate in patients with relapsed/refractory disease (80.7% vs 29.4%, P < .001). Patients achieving CR with InO also had a significantly higher rate of undetectable minimal residual disease compared with chemotherapy (78.4% vs 28.1%, P < .001). InO-specific side effects, including veno-occlusive disease, have been an ongoing area of concern, and consensus guidelines for minimizing toxicities are now available. Ongoing trials are investigating the combination of InO with other agents in the relapse setting and the addition of InO to frontline therapy. This review details the preclinical and clinical development of InO, focusing on how best to use it and future directions for further development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.