Among the many biomolecules involved in the bone mineralization processes, anionic phospholipids play an important role because of their ability to bind calcium. In particular, phosphatidylserine is a natural component of the plasmalemma and of the matrix vesicles generated from the osteoblast membrane to create nucleation centres for calcium phosphate crystal precipitation. In the present work, we demonstrate that calcium-binding phospholipids can be used as biomimetic coating materials for improving the osteointegration of metal implants. Relatively thick phosphatidylserine-based coatings were deposited on titanium coupons by dip-coating. Upon dehydration in a simulated body fluid phospholipids were quickly crosslinked by calcium and re-arranged into a three-dimensional matrix able to induce rapid formation of a calcium phosphate mineral phase. The rate of mineralization was shown to be dependent on the adopted coating formulation. In the attempt to closely mimic the cell membrane composition, heterogeneous formulations based on the mixing of anionic phospholipids (either phosphatidylserine or phosphatidylinositol) with phosphatidylcholine and cholesterol were synthesized. However, surface plasmon resonance studies as well as scanning electron microscopy and elemental analysis demonstrated that the homogeneous phosphatidylserine coating was a more effective calcification environment than the heterogeneous formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.