Silk fibroin membranes recently have been suggested as matrices for biomedical applications, such as guided tissue regeneration and burn wound dressings. The aim of this study was to evaluate the inflammatory potential of fibroin films and to compare the fibroin films with two model materials with completely different physico-chemical properties: poly(styrene) and poly(2-hydroxyethyl methacrylate). Fibroin bound lower levels of fibrinogen than did the two synthetic polymers while the same amounts of adsorbed human plasma complement fragment C3 and IgG were detected. Studies of the binding strength of C3 to fibroin, evaluated by a novel experimental procedure, indicated the occurrence of strong hydrophobic interactions at the interface. The activation of the mononuclear cells by fibroin, measured as interleukin 1beta production, was lower than the reference materials. Adhesion experiments showed the ability of the macrophages to adhere to fibroin by filopodia without a complete spreading of the cells. The results achieved in this study demonstrate that the interactions of fibroin with the humoral components of the inflammatory system were comparable with those of the two model surfaces while the degree of activation and adhesion of the immunocompetent cells appeared more limited.
The reconstruction of large bone defects in periodontal, maxillofacial, and orthopedic surgery relies on the implantation of biomaterials able to support the growth of new tissue. None of the materials currently available is able to combine all the properties required, which are (i) easy handling, (ii) biodegradation, (iii) low immunogenicity, and more importantly, (iv) induction of tissue regeneration. A new class of biodegradable biomaterials has been obtained by simple thermosetting of defatted soybean curd. The final material can be processed into films, porous scaffolds, and granules for different surgical needs. When incubated in physiological solutions the material shows water uptake of 80%, elongation at break of 0.9 mm/mm, and 25% (w/w) degradation in 7 days. Soybean-based biomaterial granules are shown to reduce the activity of the monocytes/macrophages and of the osteoclasts and to induce osteoblast differentiation in vitro, thus demonstrating a bone regeneration potential suitable for many clinical applications.
Hydroxyapatite coatings have been proven to improve the osteointegration of metal implants through a tight binding to the bone mineral phase as well as through favorable osteoblast adhesion and proliferation onto the implant surface. However, hydroxyapatite coatings are not stable and they tend to delaminate from the metal surface when challenged by the mechanical stresses experienced by the implant. Recently, a new multiphase anodic spark deposition (ASD) method has been optimized where the formation of a thick oxide film is followed by the deposition of a calcium phosphate mineral phase and its etching by alkali. The data in this paper demonstrate that this novel type of coating, BioSpark, improves the material osteointegration potential when compared to conventional ASD while offering more mechanical stability. A faster mineralization was obtained by incubation in simulated body fluids and osteoblasts showed better adhesion, proliferation, differentiation, and collagen production. These performances were related to the surface morphology, to the film calcium/phosphate ratio and its surface oxygen content, as well as to a preferential binding of structural proteins such as fibronectin.
The deployment of a vascular stent during angioplasty has greatly reduced the risks of restenosis. However, the presence of the device still induces a host response as well as a mechanical action on the blood vessel wall and an alteration of the haemodynamics. Platelet and inflammatory cells can adhere on the stent surface and be activated to produce biochemical signals able to stimulate an excessive proliferation of the smooth muscle cells with the consequent obstruction of the vessel lumen. For these reasons, the host response to two of the materials used in stent manufacture, stainless steel and diamond-like carbon, was investigated in vitro. The data showed that stainless steel induced a higher level of host response both in terms of platelet aggregation and macrophage activation. However, the spreading of inflammatory cells was more accentuated on diamond-like carbon. The inflammatory cells produced levels of platelet-derived growth factor, a key signal in smooth muscle cell proliferation, similar to stainless steel thus suggesting that carbon coatings may not be able to prevent restenosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.