In this study cutinases from Thermobifida cellulosilytica DSM44535 (Thc_Cut1 and Thc_Cut2) and Thermobifida fusca DSM44342 (Thf42_Cut1) hydrolyzing poly(ethylene terephthalate) (PET) were successfully cloned and expressed in E.coli BL21-Gold(DE3). Their ability to hydrolyze PET was compared with other enzymes hydrolyzing natural polyesters, including the PHA depolymerase (ePhaZmcl) from Pseudomonas fluorescens and two cutinases from T. fusca KW3. The three isolated Thermobifida cutinases are very similar (only a maximum of 18 amino acid differences) but yet had different kinetic parameters on soluble substrates. Their k cat and K m values on pNP–acetate were in the ranges 2.4–211.9 s–1 and 127–200 μM while on pNP–butyrate they showed k cat and K m values between 5.3 and 195.1 s–1 and between 1483 and 2133 μM. Thc_Cut1 released highest amounts of MHET and terephthalic acid from PET and bis(benzoyloxyethyl) terephthalate (3PET) with the highest concomitant increase in PET hydrophilicity as indicated by water contact angle (WCA) decreases. FTIR-ATR analysis revealed an increase in the crystallinity index A 1340/A 1410 upon enzyme treatment and an increase of the amount of carboxylic and hydroxylic was measured using derivatization with 2-(bromomethyl)naphthalene. Modeling the covalently bound tetrahedral intermediate consisting of cutinase and 3PET indicated that the active site His-209 is in the proximity of the O of the substrate thus allowing hydrolysis. On the other hand, the models indicated that regions of Thc_Cut1 and Thc_Cut2 which differed in electrostatic and in hydrophobic surface properties were able to reach/interact with PET which may explain their different hydrolysis efficiencies.
ABSTRACT:The in vitro biodegradation of Bombyx mori silk fibroin was studied by incubating fibers and films with proteolytic enzymes (collagenase type F, ␣-chymotrypsin type I-S, protease type XXI), for times ranging from 1 to 17 days. The changes in sample weight and degree of polymerization of silk fibers exposed to proteolytic attack were negligible. However, tensile properties were significantly affected, as shown by the drop of strength and elongation as a function of the degradation time. Upon incubation with proteolytic enzymes, silk films exhibited a noticeable decrease of sample weight and degree of polymerization, the extent of which depended on the type of enzyme, on the enzyme-to-substrate ratio, and on the degradation time. Protease was more aggressive than ␣-chymotrypsin or collagenase. Film fragments resistant to enzymatic degradation were enriched in glycine and alanine. FT-IR measurements showed that the degree of crystallinity of biodegraded films increased. Soluble degradation products of silk films consisted of a range of peptides widely differing in size, deriving from the amorphous sequences of the silk fibroin chains. Biodegraded fibers showed an increase of surface roughness, while films displayed surface cracks and cavities with internal voids separated by fiber-like elements.
Wool and silk were dissolved and used for the preparation of blended films. Two systems are proposed: (1) blend films of silk fibroin and keratin aqueous solutions and (2) silk fibroin and keratin dissolved in formic acid. The FTIR spectra of pure films cast from aqueous solutions indicated that the keratin secondary structure mainly consists of alpha-helix and random coil conformations. The IR spectrum of pure SF is characteristic of films with prevalently amorphous structure (random coil conformation). Pure keratin film cast from formic acid shows an increase in the amount of beta-sheet and disordered keratin structures. The FTIR pattern of SF dissolved in formic acid is characteristic of films with prevalently beta-sheet conformations with beta-sheet crystallites embedded in an amorphous matrix. The thermal behavior of the blends confirmed the FTIR results. DSC curve of pure SF is typical of amorphous SF and the curve of pure keratin show the characteristic melting peak of alpha-helices for the aqueous system. These patterns are no longer observed in the films cast from formic acid due to the ability of formic acid to induce crystallization of SF and to increase the amount of beta-sheet structures on keratin. The nonlinear trend of the different parameters obtained from FTIR analysis and DSC curves of both SF/keratin systems indicate that when proteins are mixed they do not follow additives rules but are able to establish intermolecular interactions. Degradable polymeric biomaterials are preferred candidates for medical applications. It was investigated the degradation behavior of both SF/keratin systems by in vitro enzymatic incubation with trypsin. The SF/keratin films cast from water underwent a slower biological degradation than the films cast from formic acid. The weight loss obtained is a function of the amount of keratin in the blend. This study encourages the further investigation of the type of matrices presented here to be applied whether in scaffolds for tissue engineering or as controlled release drug delivery vehicles.
The degeneration of photoreceptors in the retina is one of the major causes of adult blindness in humans. Unfortunately, no effective clinical treatments exist for the majority of retinal degenerative disorders. Here we report on the fabrication and functional validation of a fully organic prosthesis for long-term in vivo subretinal implantation in the eye of Royal College of Surgeons rats, a widely recognized model of Retinitis pigmentosa. Electrophysiological and behavioral analyses reveal a prosthesis-dependent recovery of light-sensitivity and visual acuity that persists up to 6-10 months after surgery. The rescue of the visual function is accompanied by an increase in the basal metabolic activity of the primary visual cortex, as demonstrated by positron emission tomography imaging. Our results highlight the possibility of developing a new generation of fully organic, highly biocompatible and functionally autonomous photovoltaic prostheses for subretinal implants to treat degenerative blindness.
Silk fibroin membranes recently have been suggested as matrices for biomedical applications, such as guided tissue regeneration and burn wound dressings. The aim of this study was to evaluate the inflammatory potential of fibroin films and to compare the fibroin films with two model materials with completely different physico-chemical properties: poly(styrene) and poly(2-hydroxyethyl methacrylate). Fibroin bound lower levels of fibrinogen than did the two synthetic polymers while the same amounts of adsorbed human plasma complement fragment C3 and IgG were detected. Studies of the binding strength of C3 to fibroin, evaluated by a novel experimental procedure, indicated the occurrence of strong hydrophobic interactions at the interface. The activation of the mononuclear cells by fibroin, measured as interleukin 1beta production, was lower than the reference materials. Adhesion experiments showed the ability of the macrophages to adhere to fibroin by filopodia without a complete spreading of the cells. The results achieved in this study demonstrate that the interactions of fibroin with the humoral components of the inflammatory system were comparable with those of the two model surfaces while the degree of activation and adhesion of the immunocompetent cells appeared more limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.