Silk fibroin is a fibrous protein that has been extensively studied for application in the biomedical field, and has been used as a scaffold for bone tissue engineering. Biomaterials made of proteins are prone to physical and chemical degradation during storage; lyophilization, a drying method that consists of freezing and drying steps, is known to promote minimal changes in structure and biological activity of biomaterials. This study evaluates the effect of freezing methods on the properties of lyophilized porous silk fibroin membranes. The membranes were obtained from silk fibroin solution, frozen in liquid nitrogen or ultrafreezer, lyophilized, and then characterized by XRD, FTIR, TGA, DSC and SEM. Although the membranes presented similar physical, chemical and microstructural characteristics, quench freezing with liquid nitrogen, followed by lyophilization, promoted collapse of the membranes, while slow cooling performed by ultrafreezer preserved membrane integrity.