The possibility of producing valued devices from low cost natural resources is a subject of broad interest. The present study explores the preparation and characterization of silk fibroin dense membranes using waste silk fibers from textile processing. Morphology, crystallinity, thermal resistance and cytotoxicity of membranes as well as the changes on the secondary structure of silk fibroin were analyzed after undergoing treatment with ethanol. Membranes presented amorphous patterns as determined via X-ray diffraction. The secondary structure of silk fibroin on dense membranes was either random coil (silk I) or beta-sheet (silk II), before and after ethanol treatment, respectively. The sterilized membranes presented no cytotoxicity to endothelial cells during in vitro assays. This fact stresses the material potential to be used in the fabrication of biomaterials, as coatings of cardiovascular devices and as membranes for wound dressing or drug delivery systems.
Automated spray-layer-by-layer (LbL) assembly was used to create highly reflective structurally colored thin films with high reflectance at near-UV light wavelengths. Reflectance peaks were tuned by fabricating alternating stacks of high (TiO(2) nanoparticles) and low (SiO(2) nanoparticles) refractive index materials using a non-quarter-wave design. Spray-assembled multilayer heterostructures fabricated with up to 840 individual polymer or nanoparticle deposition steps presented similar roughness and refractive index values compared to Bragg stacks obtained via immersion LbL assembly. Such complex multilayer heterostructures, however, could be fabricated in significantly shorter times; the time required to deposit a complete bilayer was only about 90 s, compared to 36 min for the immersion assembly of the same system. Optimization of the experimental parameters was performed to achieve uniform coatings and relatively smooth interfaces and surfaces. We observed that the spraying times of the nanoparticle and polymer solutions are the main parameters that determine the thickness, optical properties, and uniformity of the assembled films. Ellipsometry, atomic force microscopy (AFM), UV-vis spectroscopy, and transmission electron microscopy (TEM) were used to characterize the samples. The nanoparticle thin films were iridescent and presented relatively narrow peaks of high reflectance (∼90%) at visible and near-UV wavelengths of light.
Chitosan/silk fibroin multilayer thin films were assembled using layer-by-layer deposition. The resultant multilayer films contained nanofibers aligned parallel to the dipping direction. Fiber deposition and orientation was enabled uniquely by a judicious choice of solvent and drying conditions and layer-by-layer assembly with chitosan. The deposition of oriented nanofibers was found to be the result of a unique combination of layer-by-layer and Langmuir-Blodgett type processing. Fiber orientation was confirmed by fast Fourier transform (FFT) analysis of optical micrographs and atomic force microscopy (AFM). Bidirectional fiber alignment was realized by rotating the substrate between multilayer deposition steps. Infrared spectroscopy revealed that the silk fibroin adopted the silk II secondary structure in the deposited films. We anticipate that these anisotropic films are able to combine the biocompatibility of a natural polymer system with the mechanical strength of SF, two properties useful in many biological applications including scaffolds suitable for guiding cell attachment and spreading.
Abstract:The aim of this study was to prepare and characterize membranes of silk fibroin (SF) and chitosan (CHI) blends. Moreover, a conformation transition of SF to a more stable form induced by the addition of CHI was verified. Blend membranes were prepared, after pH adjustment, in different ratios, and physical integrity, crystallinity, structural conformation and thermal stability were characterized. The results of crystallographic analysis (XRD) indicated the tendency to higher structural organization caused by the addition of CHI. Fourier transformed infrared spectroscopy (FTIR) showed that SF is present in a more stable form in the presence of a CHI content of only 25 wt%. Thermal analysis indicated that SF is thermally stable and that when its proportion in the blend increases, the temperature at which degradation is initiated also increases.
Calcification is the most common cause of damage and subsequent failure of heart valves. Although it is a common phenomenon, little is known about it, and less about the inorganic phase obtained from this type of calcification. This article describes the scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy and Ca K-edge X-ray absorption near edge structure (XANES) characterization performed in natural and bioprosthetic heart valves calcified in vivo (in comparison to in vitro-calcified valves). SEM micrographs indicated the presence of deposits of similar morphology, and XANES results indicate, at a molecular level, that the calcification mechanism of both types of valves are probably similar, resulting in formation of poorly crystalline hydroxyapatite deposits, with Ca/P ratios that increase with time, depending on the maturation state. These findings may contribute to the search for long-term efficient anticalcification treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.