Approximately 25% of all uveal melanoma (UM) contain driver mutations in the gene encoding the spliceosome factor SF3B1, and whilst patients with such SF3B1 mutations generally have an intermediate risk on developing metastatic disease, a third of these patients develop early metastasis within 5 years after diagnosis. We therefore investigated whether clinical and/or genetic variables could be indicative of short progression-free survival (PFS < 60 months) or long PFS (PFS ≥ 60 months) for SF3B1-mutated (SF3B1mut) UM patients. We collected 146 SF3B1mut UM from our Rotterdam Ocular Melanoma Studygroup (ROMS) database and external published datasets. After stratification of all SF3B1mut UM using short PFS vs. long PFS, only largest tumor diameter (LTD) was significantly larger (mean: 17.7 mm (±2.8 SD) in the short PFS SF3B1mut group vs. the long PFS group (mean: 14.7 (±3.7 SD, p = 0.001). Combined ROMS and The Cancer Genome Atlas (TCGA) transcriptomic data were evaluated, and we identified SF3B1mut-specific canonical transcripts (e.g., a low expression of ABHD6 indicative for early-onset metastatic disease) or distinct expression of SF3B1mut UM aberrant transcripts, indicative of early- or late-onset or no metastatic SF3B1mut UM.
Uveal melanoma (UM) is the most common primary intraocular malignancy of the eye. It has a high metastatic potential and mainly spreads to the liver. Genetics play a vital role in tumor classification and prognostication of UM metastatic disease. One of the driver genes mutated in metastasized UM is subunit 1 of splicing factor 3b (SF3B1), a component of the spliceosome complex. Recurrent mutations in components of the spliceosome complex are observed in UM and other malignancies, suggesting an important role in tumorigenesis. SF3B1 is the most common mutated spliceosome gene and in UM it is associated with late-onset metastasis. This review summarizes the genetic and epigenetic insights of spliceosome mutations in UM. They form a distinct subgroup of UM and have similarities with other spliceosome mutated malignancies.
Uveal melanoma (UM) is a deadly ocular malignancy, originating from uveal melanocytes. Although much is known regarding prognostication in UM, the exact mechanism of metastasis is mostly unknown. Metastatic tumor cells are known to express a more stem-like RNA profile which is seen often in cell-specific embryonic development to induce tumor progression. Here, we identified novel transcription regulators by reanalyzing publicly available single cell RNA sequencing experiments. We identified five transcription regulators of interest: ELL2, KDM5B, REXO4, RBFOX2 and FOXD1. Our most significant finding is FOXD1, as this gene is nearly exclusively expressed in high-risk UM and its expression is associated with a poor prognosis. Even within the BAP1-mutated UM, the expression of FOXD1 is correlated with poor survival. FOXD1 is a novel factor which could potentially be involved in the metastatic capacity of high-risk UM. Elucidating the function of FOXD1 in UM could provide insight into the malignant transformation of uveal melanocytes, especially in high-risk UM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.