Mutations that are often found in uveal and cutaneous melanoma were identified in this cohort of iris melanomas and iris nevi. Therefore, iris melanomas harbor a molecular profile comparable to both choroidal melanoma and cutaneous melanoma. These findings may offer adjuvant targeted therapies for iris melanoma. There was no prognostic significance of BAP1 expression as seen in choroidal melanoma. Consequently, iris melanoma is a distinct molecular subgroup of UM. Histologic borderline malignant iris nevi can harbor BAP1 mutations and may be designated iris melanocytic tumors of uncertain malignant potential.
The aim of this study was to investigate the presence of intraocular lymphatic vessels in patients with uveal melanomas and extrascleral extension using a panel of lymphatic markers. The following immunohistochemical markers were analyzed: lymphatic vessel endothelial hyaluronic acid receptor-1 (LYVE-1), podoplanin (D2-40), prospero-related homeobox gene-1 (Prox-1), pan-endothelial marker cluster of differentiation 31 (CD31), and blood vessel endothelium-specific CD34. Lymphatic vessels were defined as a combination of staining of the following positive markers: LYVE-1, D2-40, Prox-1, and CD31; and no staining of the negative marker CD34. In total, 456 patients were enucleated; 16 of the 46 uveal melanomas with extrascleral extension were contained in stored paraffin tissue. Two samples of the 16 uveal melanomas showed focal positive intraocular vascular staining for LYVE-1 and co-expression of CD31 and CD34. Due to the lack of Prox-1 and D2-40, and positive expression of CD34, these cannot be classified as lymphatic vessels. In one case recruitment of an extraocular, intratumoral lymphatic vascular structure was observed in the periphery of the subconjunctival extrascleral extension. Intraocular lymphatic vessels are absent in uveal melanomas with extrascleral extension; however, we provide proof for recruitment of intratumoral lymphatics by uveal melanomas with extraocular extension from subconjunctival lymphatics that may explain the rare cases of regional lymphatic spread. A panel of antibodies is necessary to detect lymphatic vessels with high specificity.
Congenital diaphragmatic hernia (CDH) is a life-threatening birth defect that presents as either an isolated diaphragm defect or as part of a complex disorder with a wide array of anomalies (complex CDH). Some patients with complex CDH display distinct craniofacial anomalies such as craniofrontonasal dysplasia or craniosynostosis, defined by the premature closure of cranial sutures. Using clinical whole exome sequencing (WES), we found a BCL11B missense variant in a patient with a left-sided congenital diaphragmatic hernia as well as sagittal suture craniosynostosis. We applied targeted sequencing of BCL11B in patients with craniosynostosis or with a combination of craniosynostosis and CDH. This resulted in three additional BCL11B missense mutations in patients with craniosynostosis. The phenotype of the patient with both CDH as well as craniosynostosis was similar to the phenotype of previously reported patients with BCL11B missense mutations. Although these findings imply that both craniosynostosis as well as CDH may be associated with BCL11B mutations, further studies are required to establish whether BCL11B variants are causative mutations for both conditions or if our finding was coincidental.
Uveal melanoma (UM) is a deadly ocular malignancy, originating from uveal melanocytes. Although much is known regarding prognostication in UM, the exact mechanism of metastasis is mostly unknown. Metastatic tumor cells are known to express a more stem-like RNA profile which is seen often in cell-specific embryonic development to induce tumor progression. Here, we identified novel transcription regulators by reanalyzing publicly available single cell RNA sequencing experiments. We identified five transcription regulators of interest: ELL2, KDM5B, REXO4, RBFOX2 and FOXD1. Our most significant finding is FOXD1, as this gene is nearly exclusively expressed in high-risk UM and its expression is associated with a poor prognosis. Even within the BAP1-mutated UM, the expression of FOXD1 is correlated with poor survival. FOXD1 is a novel factor which could potentially be involved in the metastatic capacity of high-risk UM. Elucidating the function of FOXD1 in UM could provide insight into the malignant transformation of uveal melanocytes, especially in high-risk UM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.