Visual crowding is generally thought to affect recognition mostly or only at the level of feature combination. Calling this assertion into question, recent studies have shown that if a target object and its flankers belong to different categories crowding is weaker than if they belong to the same category. Nevertheless, these results can be explained in terms of featural differences between categories. The current study tests if category-level (i.e., high-level) interference in crowding occurs when featural differences are controlled for. First, replicating previous results, we found lower critical spacing for targets and flankers belonging to different categories. Second, we observed the same, albeit weaker, category-specific effect when objects in both categories had the exact same feature set, suggesting that category-specific effects persist even when featural differences are fully controlled for. Third, we manipulated the semantic content of the flankers while keeping their feature set constant, by using upright or rotated objects, and found that meaning modulated crowding. An exclusively feature-based account of crowding would predict no differences due to such changes in meaning. We conclude that crowding results from not only the well-documented feature-level interactions but also additional interactions at a level where objects are grouped by meaning.
Decisions about where to fixate are highly variable and often inefficient. In the current study, we investigated whether such decisions would improve with increased motivation. Participants had to detect a discrimination target, which would appear in one of two boxes, but only after they chose a location to fixate. The distance between boxes determines which location to fixate to maximise the probability of being able to see the target: participants should fixate between the two boxes when they are close together, and on one of the two boxes when they are far apart. We “gamified” this task, giving participants easy-to-track rewards that were contingent on discrimination accuracy. Their decisions and performance were compared to previous results that were gathered in the absence of this additional motivation. We used a Bayesian beta regression model to estimate the size of the effect and associated variance. The results demonstrate that discrimination accuracy does indeed improve in the presence of performance-related rewards. However, there was no difference in eye movement strategy between the two groups, suggesting this improvement in accuracy was not due to the participants making more optimal eye movement decisions. Instead, the motivation encouraged participants to expend more effort on other aspects of the task, such as paying more attention to the boxes and making fewer response errors.
Here we report persistent choice variability in the presence of a simple decision rule. Two analogous choice problems are presented, both of which involve making decisions about how to prioritize goals. In one version, participants choose a place to stand to throw a beanbag into one of two hoops. In the other, they must choose a place to fixate to detect a target that could appear in one of two boxes. In both cases, participants do not know which of the locations will be the target when they make their choice. The optimal solution to both problems follows the same, simple logic: when targets are close together, standing at/fixating the midpoint is the best choice. When the targets are far apart, accuracy from the midpoint falls, and standing/fixating close to one potential target achieves better accuracy. People do not follow, or even approach, this optimal strategy, despite substantial potential benefits for performance. Two interventions were introduced to try and shift participants from sub-optimal, variable responses to following a fixed, rational rule. First, we put participants into circumstances in which the solution was obvious. After participants correctly solved the problem there, we immediately presented the slightly-less-obvious context. Second, we guided participants to make choices that followed an optimal strategy, and then removed the guidance and let them freely choose. Following both of these interventions, participants immediately returned to a variable, sub-optimal pattern of responding. The results show that while constructing and implementing rational decision rules is possible, making variable responses to choice problems is a strong and persistent default mode. Borrowing concepts from classic animal learning studies, we suggest this default may persist because choice variability can provide opportunities for reinforcement learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.