Purpose Easily employable quantitative supply chain complexity (SCC) measures considering the significant dimensions of complexity as well as the drivers that represent those dimensions are limited in the literature. The purpose of this paper is to propose an integrated interpretive structural modeling (ISM) and a graph-theoretic approach to quantify SCC by a single numerical index considering the interdependence and the inheritance of the SCC drivers. Design/methodology/approach In total, 18 SCC drivers identified from the literature are clustered according to the significant dimensions of complexity. The interdependencies established through ISM and inheritance values of SCC drivers are mapped into a Variable Permanent Matrix (VPM). The permanent function of this VPM is then computed and the resulting single numerical index is the measure of SCC. Findings A scale is proposed by computing the minimum and maximum threshold values of SCC with the help of expert opinions of the Indian automotive industry. The complexity of commercial and passenger vehicle sectors within the automotive industry is measured and compared using the proposed scale. From the results, it is identified that the number of suppliers, increase in spare-parts due to shortened product life-cycle and demand uncertainties increase the SCC of the passenger vehicle sector, while number of parts, products and processes, variety of products and process and unreliability of suppliers increase the complexity of the commercial vehicle sector. The result indicates that various SCC drivers have a different impact on determining the SCC level of these two sectors. Originality/value The authors propose an integrated method that can be readily applied to measure and quantify SCC considering the significant dimensions of complexity as well as the interdependence and the inheritance of the SCC drivers that contribute to those dimensions. This index further helps to compare the complexity of the supply chain which varies between industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.