Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is not completely reversible. Smoking is the leading risk factor for compromised lung function stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung cells. RAGE expression increases following cigarette smoke exposure and expression is elevated in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways that culminate in expression and secretion of several cytokines, chemokines, enzymes, and other mediators. In the current review, new transgenic mouse models that conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression in the adult lung models features of COPD including pronounced inflammation and loss of parenchymal tissue. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of COPD.
BackgroundClaudins are transmembrane proteins expressed in tight junctions that prevent paracellular transport of extracellular fluid and a variety of other substances. However, the expression profile of Claudin-6 (Cldn6) in the developing lung has not been characterized.Methods and resultsCldn6 expression was determined during important periods of lung organogenesis by microarray analysis, qPCR and immunofluorescence. Expression patterns were confirmed to peak at E12.5 and diminish as lung development progressed. Immunofluorescence revealed that Cldn6 was detected in cells that also express TTF-1 and FoxA2, two critical transcriptional regulators of pulmonary branching morphogenesis. Cldn6 was also observed in cells that express Sox2 and Sox9, factors that influence cell differentiation in the proximal and distal lung, respectively. In order to assess transcriptional control of Cldn6, 0.5, 1.0, and 2.0-kb of the proximal murine Cldn6 promoter was ligated into a luciferase reporter and co-transfected with expression vectors for TTF-1 or two of its important transcriptional co-regulators, FoxA2 and Gata-6. In almost every instance, TTF-1, FoxA2, and Gata-6 activated gene transcription in cell lines characteristic of proximal airway epithelium (Beas2B) and distal alveolar epithelium (A-549).ConclusionsThese data revealed for the first time that Cldn6 might be an important tight junctional component expressed by pulmonary epithelium during lung organogenesis. Furthermore, Cldn6-mediated aspects of cell differentiation may describe mechanisms of lung perturbation coincident with impaired cell junctions and abnormal membrane permeability.
Cigarette smoke is known to be a risk for the development of intrauterine growth restriction (IUGR). Our objective was to assess the effects of secondhand smoke (SHS) during pregnancy and to what extent it regulates the activation of mTOR family members and murine trophoblast invasion. Mice were treated to SHS for 4 days. Placental and fetal weights were recorded at the time of necropsy. Immunohistochemistry was used to determine the level of placental trophoblast invasion. Western blots were utilized to assess the activation of caspase 3, XIAP, mTOR, p70 and 4EBP1 in treated and control placental lysates. As compared to controls, treated animals showed: (1) decreased placental (1.4-fold) and fetal (2.3-fold) weights (p < 0.05); (2) decreased trophoblast invasion; (3) significantly decreased active caspase 3 (1.3-fold; p < 0.02) and increased active XIAP (3.6-fold; p < 0.05) in the placenta; and (4) a significant decrease in the activation of placental mTOR (2.1-fold; p < 0.05), p70 (1.9-fold; p < 0.05) and 4EBP1 (1.3-fold; p < 0.05). Confirmatory in vitro experiments revealed decreased trophoblast invasion when SW71 cells were treated with 0.5 or 1.0 % cigarette smoke extract (CSE). Similar to primary smoking, SHS may induce IUGR via decreased activation of the mTOR family of proteins in the placenta. Increased activation of the placental XIAP protein could be a survival mechanism for abnormal trophoblast cells during SHS exposure. Further, CSE reduced trophoblast invasion, suggesting a direct causative effect of smoke on susceptible trophoblast cells involved in IUGR progression. These results provide important insight into the physiological consequences of SHS exposure and smoke-mediated placental disease.
Intrauterine growth restriction (IUGR) is a disease affecting 10% of all pregnancies. IUGR is associated with maternal, fetal, or placental abnormalities. Studies investigating the effects of secondhand smoke (SHS) exposure and IUGR are limited. The receptor for advanced glycation end-products (RAGE) is a pro-inflammatory transmembrane receptor increased by SHS in the placenta. We tested the hypothesis that inhibition of RAGE during SHS exposure protects from smoke-induced IUGR. C57BL/6 mice were exposed to SHS or SHS + semi-synthetic glycosaminoglycan ethers (SAGEs) known to inhibit RAGE signaling. Trophoblast cells were treated with cigarette smoke extract (CSE) with or without SAGEs in order to address the effects of RAGE inhibition during trophoblast invasion in vitro. SHS-treated mice demonstrated a significant reduction in fetal weight (7.35-fold, P ≤ 0.0001) and placental weight (1.13-fold, P ≤ 0.0001) compared with controls. Mice co-treated with SHS and SAGEs were protected from SHS-induced fetal weights decreases. SHS treatment of C57BL/6 mice activated placental extracellular signal-regulated kinase (ERK) (3.0-fold, P ≤ 0.05), JNK (2.4-fold, P ≤ 0.05) and p38 (2.1-fold, P ≤ 0.05) and the expression of inflammatory mediators including TNF-α (1.34-fold, P ≤ 0.05) and IL-1β (1.03-fold, P ≤ 0.05). SHS-mediated activation of these molecules was reduced to basal levels when SAGE was co-administered. Invasion of trophoblast cells decreased 92% (P < 0.002) when treated with CSE and CSE-mediated invasion was completely reversed by SAGEs. We conclude that RAGE inhibition protects against fetal weight loss during SHS-induced IUGR. These studies provide insight into tobacco-mediated IUGR development and clarify avenues that may be helpful in the alleviation of placental complications.
This decision analytical model describes the use of a semisynthetic population to identify the distribution of excess cardiovascular death risk and its correlation with social and biological risk factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.