We present results from a near-infrared (NIR) adaptive optics (AO) survey of pre-main-sequence stars in the Lupus Molecular Cloud with VLT/NACO to identify (sub)stellar companions down to ∼20 au separation and investigate the effects of multiplicity on circumstellar disc properties. We observe for the first time in the NIR with AO a total of 47 targets and complement our observations with archival data for another 58 objects previously observed with the same instrument. All 105 targets have millimetre ALMA data available, which provide constraints on disc masses and sizes. We identify a total of 13 multiple systems, including 11 doubles and 2 triples. In agreement with previous studies, we find that the most massive (Mdust > 50 M⊕) and largest (Rdust > 70 au) discs are only seen around stars lacking visual companions (with separations of 20–4800 au) and that primaries tend to host more massive discs than secondaries. However, as recently shown in a very similar study of >200 PMS stars in the Ophiuchus Molecular Cloud, the distribution of disc masses and sizes are similar for single and multiple systems for Mdust < 50 M⊕ and radii Rdust < 70 au. Such discs correspond to ∼80–90% of the sample. This result can be seen in the combined sample of Lupus and Ophiuchus objects, which now includes more than 300 targets with ALMA imaging and NIR AO data, and implies that stellar companions with separations > 20 au mostly affect discs in the upper 10% of the disc mass and size distributions.
We present ALMA 1.3 mm and 0.86 mm observations of the nearby (17.34 pc) F9V star q1 Eri (HD 10647, HR 506). This system, with age ∼1.4 Gyr, hosts a ∼2 au radial velocity planet and a debris disc with the highest fractional luminosity of the closest 300 FGK type stars. The ALMA images, with resolution ∼0${^{\prime\prime}_{.}}$5, reveal a broad (34-134 au) belt of millimeter emission inclined by 76.7 ± 1.0 degrees with maximum brightness at 81.6 ± 0.5 au. The images reveal an asymmetry, with higher flux near the southwest ansa, which is also closer to the star. Scattered light observed with the Hubble Space Telescope is also asymmetric, being more radially extended to the northeast. We fit the millimeter emission with parametric models and place constraints on the disc morphology, radius, width, dust mass, and scale height. We find the southwest ansa asymmetry is best fitted by an extended clump on the inner edge of the disc, consistent with perturbations from a planet with mass 8 M⊕ − 11 MJup at ∼60 au that may have migrated outwards, similar to Neptune in our Solar System. If the measured vertical aspect ratio of h = 0.04 ± 0.01 is due to dynamical interactions in the disc, then this requires perturbers with sizes >1200 km. We find tentative evidence for an 0.86 mm excess within 10 au, 70 ± 22 μJy, that may be due to an inner planetesimal belt. We find no evidence for CO gas, but set an upper bound on the CO gas mass of 4 × 10−6 M⊕ (3 σ), consistent with cometary abundances in the Solar System.
Class III stars are those in star forming regions without large non-photospheric infrared emission, suggesting recent dispersal of their protoplanetary disks. We observed 30 class III stars in the 1-3 Myr Lupus region with ALMA at ∼856μm, resulting in 4 detections that we attribute to circumstellar dust. Inferred dust masses are 0.036 − 0.093M⊕, ∼1 order of magnitude lower than any previous measurements; one disk is resolved with radius ∼80 au. Two class II sources in the field of view were also detected, and 11 other sources, consistent with sub-mm galaxy number counts. Stacking non-detections yields a marginal detection with mean dust mass ∼0.0048M⊕. We searched for gas emission from the CO J=3-2 line, and present its detection to NO Lup inferring a gas mass (4.9 ± 1.1) × 10−5 M⊕ and gas-to-dust ratio 1.0 ± 0.4. Combining our survey with class II sources shows a gap in the disk mass distribution from 0.09 − 2M⊕ for >0.7M⊙ Lupus stars, evidence of rapid dispersal of mm-sized dust from protoplanetary disks. The class III disk mass distribution is consistent with a population model of planetesimal belts that go on to replenish the debris disks seen around main sequence stars. This suggests that planetesimal belt formation does not require long-lived protoplanetary disks, i.e., planetesimals form within ∼2 Myr. While all 4 class III disks are consistent with collisional replenishment, for two the gas and/or mid-IR emission could indicate primordial circumstellar material in the final stages of protoplanetary disk dispersal. Two class III stars without sub-mm detections exhibit hot emission that could arise from ongoing planet formation processes inside ∼1 au.
The location of surface brightness maxima (e.g. apocentre and pericentre glow) in eccentric debris discs are often used to infer the underlying orbits of the dust and planetesimals that comprise the disc. However, there is a misconception that eccentric discs have higher surface densities at apocentre and thus necessarily exhibit apocentre glow at long wavelengths. This arises from the expectation that the slower velocities at apocentre lead to a “pile up” of dust, which fails to account for the greater area over which dust is spread at apocentre. Instead we show with theory and by modelling three different regimes that the morphology and surface brightness distributions of face-on debris discs are strongly dependent on their eccentricity profile (i.e. whether this is constant, rising or falling with distance). We demonstrate that at shorter wavelengths the classical pericentre glow effect remains true, whereas at longer wavelengths discs can either demonstrate apocentre glow or pericentre glow. We additionally show that at long wavelengths the same disc morphology can produce either apocentre glow or pericentre glow depending on the observational resolution. Finally, we show that the classical approach of interpreting eccentric debris discs using line densities is only valid under an extremely limited set of circumstances, which are unlikely to be met as debris disc observations become increasingly better resolved.
At 7.7 pc, the A-type star Fomalhaut hosts a bright debris disk with multiple radial components. The disk is eccentric and misaligned, strongly suggesting that it is sculpted by interaction with one or more planets. Compact sources are now being detected with JWST, suggesting that new planet detections may be imminent. However, to confirm such sources as companions, common proper motion with the star must be established, as with unprecedented sensitivity comes a high probability that planet candidates are actually background objects. Here, ALMA and Keck observations of Fomalhaut are found to show significant emission at the same sky location as multiple compact sources in JWST MIRI coronagraphic observations, one of which has been dubbed the ‘Great Dust Cloud’ because it lies within the outer belt. Since the ground-based data were obtained between 6 to 18 years prior to the JWST observations, these compact sources are unlikely to be common proper motion companions to Fomalhaut. More generally, this work illustrates that images collected at a range of wavelengths can be valuable for rejecting planet candidates uncovered via direct imaging with JWST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.