ATPase activity rapidly increased immediately after SW transfer. Glycogen content in both the gills and liver were significantly depleted after SW transfer, but the depletion occurred earlier in gills than in the liver. Gill GP activity and protein expression were upregulated 1-3·h posttransfer and eventually recovered to the normal level as determined in the control group. At the same time, GS protein expression was downregulated. Similar changes in liver GP and GS protein expression were also observed but they occurred later at 6-12·h post-transfer. In conclusion, GR cells are initially stimulated to provide prompt energy for neighboring MR cells that trigger ion-secretion mechanisms. Several hours later, the liver begins to degrade its glycogen stores for the subsequent energy supply.
The molecular and cellular mechanisms behind glycogen metabolism and the energy metabolite translocation between mammal neurons and astrocytes have been well studied. A similar mechanism is proposed for rapid mobilization of local energy stores to support energy-dependent transepithelial ion transport in gills of the Mozambique tilapia (Oreochromis mossambicus). A novel gill glycogen phosphorylase isoform (tGPGG), which catalyzes the initial degradation of glycogen, was identified in branchial epithelial cells of O. mossambicus. Double in situ hybridization and immunocytochemistry demonstrated that tGPGG mRNA and glycogen were colocalized in glycogen-rich cells (GRCs), which surround ionocytes (labeled with a Na(+)-K(+)-ATPase antiserum) in gill epithelia. Concanavalin-A (a marker for the apical membrane) labeling indicated that GRCs and mitochondria-rich cells share the same apical opening. Quantitative real-time PCR analyses showed that tGPGG mRNA expression levels specifically responded to environmental salinity changes. Indeed, the glycogen content, glycogen phosphorylase (GP) protein level and total activity, and the density of tGPGG-expressing cells (i.e., GRCs) in fish acclimated to seawater (SW) were significantly higher than those in freshwater controls. Short-term acclimation to SW caused an evident depletion in the glycogen content of GRCs. Taken altogether, tGPGG expression in GRCs is stimulated by hyperosmotic challenge, and this may catalyze initial glycogen degradation to provide the adjacent ionocytes with energy to carry out iono- and osmoregulatory functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.