We demonstrate dynamic trapping and manipulation of nanoparticles with plasmonic holograms. By tailoring the illumination pattern of an incident light beam with a computer-controlled spatial light modulator, constructive and destructive interference of plasmon waves create a focused hotspot that can be moved across a surface. Specifically, a computer-generated hologram illuminating the perimeter of a silver Bull's Eye nanostructure generates surface plasmons that propagate toward the center. Shifting the phase of the plasmon waves as a function of space gives complete control over the location of the focus. We show that 200 nm diameter nanoparticles trapped in this focus can be moved in arbitrary patterns. This allows, for example, circular motion with linearly polarized light. These results show the versatility of holographically generated surface plasmon waves for advanced trapping and manipulation of nanoparticles.
for dynamic control of multiple traps in real-time. These alternatives to conventional optical tweezers have made it possible to trap single molecules and to perform a variety of studies on them. Presented here is a review of recent developments in nano-optical tweezers and their current and future applications.
The front cover artwork is provided by Prof. Sang‐Hyun Oh's group at the University of Minnesota. The image shows the optical trapping of chiral nanoparticles using coaxial nano‐optical tweezers, devices capable of harnessing light to manipulate objects a few nanometers in size. Read the full text of the Review at 10.1002/cphc.202100004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.