Summary
1. It is becoming increasingly clear that fresh waters play a major role in the global C cycle. Stream ecosystem respiration (ER) and gross primary productivity (GPP) exert a significant control on organic carbon fluxes in fluvial networks. However, little is known about how climate change will influence these fluxes.
2. Here, we used a ‘natural experiment’ to demonstrate the role of temperature and nutrient cycling in whole‐system metabolism (ER, GPP and net ecosystem production – NEP), in naturally heated geothermal (5–25 °C) Icelandic streams.
3. We calculated ER and GPP with a new, more accurate method, which enabled us to take into account the additional uncertainties owing to stream spatial heterogeneity in oxygen concentrations within a reach. ER ranged 1–25 g C m−2 day−1 and GPP 1–10 g C m−2 day−1. The median uncertainties (based on 1 SD) in ER and GPP were 50% and 20%, respectively.
4. Despite extremely low water nutrient concentrations, high metabolic rates in the warm streams were supported by fast cycling rates of nutrients, as revealed from inorganic nutrient (N, P) addition experiments.
5. ER exceeded GPP in all streams (with average GPP/ER = 0.6) and was more strongly related to temperature than GPP, resulting in elevated negative NEP with warming. We show that, as a first approximation based on summer investigations, global stream carbon emission to the atmosphere would nearly double from 0.12 Pg C year−1 at 13 °C to 0.21 (0.15–0.33) Pg C year−1 with a 5 °C warming.
6. Compared to previous studies from natural systems (including terrestrial ecosystems), the temperature dependence of stream metabolism was not confounded by latitude or altitude, seasonality, light and nutrient availability, water chemistry, space availability (water transient storage), and water availability.
7. Consequently, stream nutrient processing is likely to increase with warming, protecting downstream ecosystems (rivers, estuaries, coastal marine systems) during the summer low flows from nutrient enrichment, but at the cost of increased CO2 flux back to the atmosphere.
Ecosystem respiration is a primary component of the carbon cycle and understanding the mechanisms that determine its temperature dependence will be important for predicting how rates of carbon efflux might respond to global warming. We used a rare model system, comprising a network of geothermally heated streams ranging in temperature from 5 °C to 25 °C, to explore the nature of the relationship between respiration and temperature. Using this ‘natural experiment’, we tested whether the natal thermal regime of stream communities influenced the temperature dependence of respiration in the absence of other potentially confounding variables. An empirical survey of 13 streams across the thermal gradient revealed that the temperature dependence of whole‐stream respiration was equivalent to the average activation energy of the respiratory complex (0.6–0.7 eV). This observation was also consistent for in‐situ benthic respiration. Laboratory experiments, incubating biofilms from four streams across the thermal gradient at a range of temperatures, revealed that the activation energy and Q10 of respiration were remarkably consistent across streams, despite marked differences in their thermal history and significant turnover in species composition. Furthermore, absolute rates of respiration at standardised temperature were also unrelated to ambient stream temperature, but strongly reflected differences in biofilm biomass. Together, our results suggest that the core biochemistry, which drives the kinetics of oxidative respiratory metabolism, may be well conserved among diverse taxa and environments, and that the intrinsic sensitivity of respiration to temperature is not influenced by ambient environmental temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.