Several aspects of OLINDA/EXM dose calculation were compared with patient-specific dose estimates obtained using Monte Carlo. Differences in patient anatomy led to large differences in cross-organ doses. However, total organ doses were still in good agreement since most of the deposited dose is due to self-irradiation. Comparison of voxelized doses calculated by Monte Carlo and the voxel S value technique showed that the 3D dose distributions produced by the respective methods are nearly identical.
This study presents a summary of the dosimetry calculations performed for three technetium agents most commonly used in nuclear medicine diagnostic studies, namely sestamibi™, phosphonates and pertechnetate, labeled with cyclotron-produced technetium. Calculated patient doses were compared to those that would be delivered by the same radiotracers labeled with technetium obtained from a generator produced in a reactor. The main difference is that technetium from a generator is pure, i.e. contains only (99m)Tc and its decay product (99g)Tc, while in a cyclotron a large number of other stable and radioactive isotopes are created. In our calculations only technetium radioisotopes (ground and isomeric states) were considered as they will be included in the radiotracer labeling process and will contribute to the patient dose. Other elements should be removed by chemical purification. These dose estimates are based on our theoretical calculations of the proton-induced reaction cross sections and radioisotope production yields. Thick targets of enriched (three different compositions) and natural molybdenum, and three initial beam energies (16, 19 and 24 MeV) were considered for irradiation times of 3, 6 and 12 h with a beam current of 200 µA. The doses were calculated for injection times corresponding to 0, 2, 8, 12 and 24 h after the end of beam.
Focal spot blooming has a noticeable effect on spatial resolution in CT imaging. The focal spot shaping technology of scanner A greatly reduced blooming effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.