We view incremental experiential learning in intelligent software agents as progressive agent self-adaptation. When an agent produces an incorrect behavior, then it may reflect on, and thus diagnose and repair, the reasoning and knowledge that produced the incorrect behavior. In particular, we focus on the self-diagnosis and self-repair of an agent's domain knowledge. The core issue that this article addresses is: what kind of metaknowledge may enable the agent to diagnose faults in its domain knowledge? To address this question, we propose a representation that explicitly encodes metaknowledge in the form of Empirical Verification Procedures (EVPs). In the proposed knowledge representation, an EVP may be associated with each concept within the agent's domain knowledge. Each EVP explicitly semantically grounds the associated concept in the agent's perception, and can thus be used as a test to determine the validity of knowledge of that concept during diagnosis. We present the empirical evaluation of a system, Augur, that makes use of EVP metaknowledge to adapt its own domain knowledge in the context of a particular subclass of classification problem called Compositional Classification.
Human experience with interactive games will be enhanced if the software agents that play the game learn from their failures. Techniques such as reinforcement learning provide one way in which these agents may learn from their failures. Model-based meta-reasoning, a technique in which an agent uses a self-model for blame assignment, provides another. This paper evaluates a framework in which both these approaches are combined. We describe an experimental investigation of a specific task (defending a city) in a computer war strategy game called FreeCiv. Our results indicate that in the task examined, model-based meta-reasoning coupled with reinforcement learning enables the agent to learn the task with performance matching that of an expert designed agent and with speed exceeding that of a pure reinforcement learning agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.