Abundance and population trends of Critically Endangered North Atlantic right whales (Eubalaena glacialis, NARW) have been estimated using mark-recapture analyses where an individual’s state is based upon set delineations of age, using historical estimates of age at first reproduction. Here we assigned individual females to states based upon their reproductive experience, rather than age. We developed a Bayesian mark-recapture-recovery model to investigate how survival, recapture, site-fidelity and dead-recovery probabilities vary for female NARW in different states, using data collected from 1977-2018. States were assigned as calves for individuals in their first year; pre-breeder for individuals greater than one year of age who had yet to produce a calf, or breeder if an individual had reproduced. A decline in abundance of female NARW was seen starting in 2014, with 185 females declining yearly to 142 by 2018. The largest decline was seen in breeding females, with 72 estimated to be alive at the beginning of 2018, while female pre-breeder abundance plateaued at around 70 between 2011- 2018. Females born from 2000 onwards had an average 4% (95% CI:0.03-0.06) chance of transitioning from pre-breeder to breeder, compared to 8% (95%CI:0.06-0.1) for females born prior. This reduction in transition rate from non-breeder to breeder for the current cohort resulted in breeding females declining to 51% of the female population by 2018. We show that a collapse in fecundity of breeding females, and the failure of pre-breeders to start breeding, is an important factor in understanding the current decline in abundance of the NARW.
Climate change is warming the world's oceans at an unprecedented rate. Under predicted end-of-century temperatures, many teleosts show impaired development and altered critical behaviors, including behavioral lateralisation. Since laterality is an expression of brain functional asymmetries, changes in the strength and direction of lateralisation suggest that rapid climate warming might impact brain development and function. However, despite the implications for cognitive functions, the potential effects of elevated temperature in lateralisation of elasmobranch fishes are unknown. We incubated and reared Port Jackson sharks at current and projected end-of-century temperatures and measured preferential detour responses to left or right. Sharks incubated at elevated temperature showed stronger absolute laterality and were significantly biased towards the right relative to sharks reared at current temperature. We propose that animals reared under elevated temperatures might have more strongly lateralized brains to cope with deleterious effects of climate change on brain development and growth. However, far more research in elasmobranch lateralisation is needed before the significance of these results can be fully comprehended. This study provides further evidence that elasmobranchs are susceptible to the effects of future ocean warming, though behavioral mechanisms might allow animals to compensate for some of the challenges imposed by climate change.
In South Australia, discrete populations of bottlenose dolphins inhabit two large gulfs, where key threats and population estimates have been identified. Climate change, habitat disturbance (shipping and noise pollution), fishery interactions and epizootic events have been identified as the key threats facing these populations. The Population Consequences of Disturbance (PCoD) framework has been developed to understand how disturbances can influence population dynamics. We used population estimates combined with population specific bioenergetics models to undertake a partial PCoD assessment, comparing how the two populations respond to the identified regional threats. Populations were modeled over a 5 year period looking at the influence of each disturbance separately. As expected, the most extreme epizootic and climate change disturbance scenarios with high frequency and intensity had the biggest influence on population trends. However, the magnitude of the effect differed by population, with Spencer Gulf showing a 43% and Gulf St Vincent a 23% decline under high frequency and high impact epizootic scenarios. Epizootic events were seen to have the strongest influence on population trends and reproductive parameters for both populations, followed by climate change. PCoD modeling provides insights into how disturbances may affect different populations and informs management on how to mitigate potential effects while there is still time to act.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.