Abstract. A new inventory of air pollutant emissions inAsia in the year 2006 is developed to support the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B) funded by the National Aeronautics and Space Administration (NASA). Emissions are estimated for all major anthropogenic sources, excluding biomass burning. We estimate total Asian anthropogenic emissions in the year 2006 as follows: 47.1 Tg SO 2 , 36.7 Tg NO x , 298.2 Tg CO, 54.6 Tg NMVOC, 29.2 Tg PM 10 , 22.2 Tg PM 2.5 , 2.97 Tg BC, and 6.57 Tg OC. We emphasize emissions from China because they dominate the Asia pollutant outflow to the Pacific and the increase of emissions from China since 2000 is of great concern. We have implemented a series of improved methodologies to gain a better understanding of emissions from China, including a detailed technologybased approach, a dynamic methodology representing rapid technology renewal, critical examination of energy statistics, and a new scheme of NMVOC speciation for modelready emissions. We estimate China's anthropogenic emissions in the year 2006 to be as follows: 31.0 Tg SO 2 , 20.8 Tg NO x , 166.9 Tg CO, 23.2 Tg NMVOC, 18.2 Tg PM 10 , 13.3 Tg PM 2.5 , 1.8 Tg BC, and 3.2 Tg OC. We have also estimated 2001 emissions for China using the same methodology and found that all species show an increasing trend during 2001-2006: 36% increase for SO 2 , 55% for NO x , 18% for CO, 29% for VOC, 13% for PM 10 , and 14% for Correspondence to: Q. Zhang (zhangq@anl.gov) PM 2.5 , BC, and OC. Emissions are gridded at a resolution of 30 min×30 min and can be accessed at our web site (http://mic.greenresource.cn/intex-b2006).
Abstract. A new inventory of air pollutant emissions in Asia in the year 2006 is developed to support the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B) funded by the National Aeronautics and Space Administration (NASA). Emissions are estimated for all major anthropogenic sources, excluding biomass burning. We estimate total Asian anthropogenic emissions in the year 2006 as follows: 47.1 Tg SO2, 36.7 Tg NOx, 298.2 Tg CO, 54.6 Tg NMVOC, 29.2 Tg PM10, 22.2 Tg PM2.5, 2.97 Tg BC, and 6.57 Tg OC. We emphasize emissions from China because they dominate the Asia pollutant outflow to the Pacific and the increase of emissions from China since 2000 is of great concern. We have implemented a~series of improved methodologies to gain a better understanding of emissions from China, including a detailed technology-based approach, a dynamic methodology representing rapid technology renewal, critical examination of energy statistics, and a new scheme of NMVOC speciation for model-ready emissions. We estimate China's anthropogenic emissions in the year 2006 to be as follows: 31.0 Tg SO2, 20.8 Tg NOx, 166.9 Tg CO, 23.2 Tg NMVOC, 18.2 Tg PM10, 13.3 Tg PM2.5, 1.8 Tg BC, and 3.2 Tg OC. We have also estimated 2001 emissions for China using the same methodology and found that all species show an increasing trend during 2001–2006: 36% increase for SO2, 55% for NOx, 18% for CO, 29% for VOC, 13% for PM10, and 14% for PM2.5, BC, and OC. Emissions are gridded at a resolution of 30 min×30 min and can be accessed at our web site (http://mic.greenresource.cn/intex-b2006).
Ammonia (NH(3)) is one important precursor of inorganic fine particles; however, knowledge of the impacts of NH(3) emissions on aerosol formation in China is very limited. In this study, we have developed China's NH(3) emission inventory for 2005 and applied the Response Surface Modeling (RSM) technique upon a widely used regional air quality model, the Community Multi-Scale Air Quality Model (CMAQ). The purpose was to analyze the impacts of NH(3) emissions on fine particles for January, April, July, and October over east China, especially those most developed regions including the North China Plain (NCP), Yangtze River delta (YRD), and the Pearl River delta (PRD). The results indicate that NH(3) emissions contribute to 8-11% of PM(2.5) concentrations in these three regions, comparable with the contributions of SO(2) (9-11%) and NO(x) (5-11%) emissions. However, NH(3), SO(2), and NO(x) emissions present significant nonlinear impacts; the PM(2.5) responses to their emissions increase when more control efforts are taken mainly because of the transition between NH(3)-rich and NH(3)-poor conditions. Nitrate aerosol (NO(3)(-)) concentration is more sensitive to NO(x) emissions in NCP and YRD because of the abundant NH(3) emissions in the two regions, but it is equally or even more sensitive to NH(3) emissions in the PRD. In high NO(3)(-) pollution areas such as NCP and YRD, NH(3) is sufficiently abundant to neutralize extra nitric acid produced by an additional 25% of NO(x) emissions. The 90% increase of NH(3) emissions during 1990-2005 resulted in about 50-60% increases of NO(3)(-) and SO(4)(2-) aerosol concentrations. If no control measures are taken for NH(3) emissions, NO(3)(-) will be further enhanced in the future. Control of NH(3) emissions in winter, spring, and fall will benefit PM(2.5) reduction for most regions. However, to improve regional air quality and avoid exacerbating the acidity of aerosols, a more effective pathway is to adopt a multipollutant strategy to control NH(3) emissions in parallel with current SO(2) and NO(x) controls in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.