BackgroundCurrent guidelines recommend the use of Escherichia coli (EC) or thermotolerant (“fecal”) coliforms (FC) as indicators of fecal contamination in drinking water. Despite their broad use as measures of water quality, there remains limited evidence for an association between EC or FC and diarrheal illness: a previous review found no evidence for a link between diarrhea and these indicators in household drinking water.ObjectivesWe conducted a systematic review and meta-analysis to update the results of the previous review with newly available evidence, to explore differences between EC and FC indicators, and to assess the quality of available evidence.MethodsWe searched major databases using broad terms for household water quality and diarrhea. We extracted study characteristics and relative risks (RR) from relevant studies. We pooled RRs using random effects models with inverse variance weighting, and used standard methods to evaluate heterogeneity and publication bias.ResultsWe identified 20 relevant studies; 14 studies provided extractable results for meta-analysis. When combining all studies, we found no association between EC or FC and diarrhea (RR 1.26 [95% CI: 0.98, 1.63]). When analyzing EC and FC separately, we found evidence for an association between diarrhea and EC (RR: 1.54 [95% CI: 1.37, 1.74]) but not FC (RR: 1.07 [95% CI: 0.79, 1.45]). Across all studies, we identified several elements of study design and reporting (e.g., timing of outcome and exposure measurement, accounting for correlated outcomes) that could be improved upon in future studies that evaluate the association between drinking water contamination and health.ConclusionsOur findings, based on a review of the published literature, suggest that these two coliform groups have different associations with diarrhea in household drinking water. Our results support the use of EC as a fecal indicator in household drinking water.
Background Traditional fecal indicator bacteria (FIB) measurement is too slow (>18 hr) for timely swimmer warnings. Objectives Assess relationship of rapid indicator methods (qPCR) to illness at a marine-beach impacted by urban-runoff. Methods We measured baseline and two-week health in 9525 individuals visiting Doheny Beach 2007-08. Illness rates were compared (swimmers vs. non-swimmers). FIB measured by traditional (Enterococcus spp. by EPA Method 1600 or Enterolert™, fecal coliforms, total coliforms) and three rapid qPCR assays for Enterococcus spp. (Taqman, Scorpion-1, Scorpion-2) were compared to health. Primary bacterial source was a creek flowing untreated into ocean; the creek did not reach the ocean when a sand berm formed. This provided a natural experiment for examining FIB-health relationships under varying conditions. Results We observed significant increases in diarrhea (OR1.90, 95% CI 1.29-2.80 for swallowing water) and other outcomes in swimmers compared to non-swimmers. Exposure (body immersion, head immersion, swallowed water) was associated with increasing risk of gastrointestinal illness (GI). Daily GI incidence patterns were different: swimmers (2-day peak ) and non-swimmers (no peak). With berm-open, we observed associations between GI and traditional and rapid methods for Enterococcus; fewer associations occurred when berm status was not considered. Conclusions We found increased risk of GI at this urban-runoff beach. When FIB source flowed freely (berm-open), several traditional and rapid indicators were related to illness. When FIB source was weak (berm-closed) fewer illness-associations were seen. These different relationships under different conditions at a single beach demonstrate the difficulties using these indicators to predict health risk.
Background: Water distribution systems are vulnerable to performance deficiencies that can cause (re)contamination of treated water and plausibly lead to increased risk of gastrointestinal illness (GII) in consumers.Objectives: It is well established that large system disruptions in piped water networks can cause GII outbreaks. We hypothesized that routine network problems can also contribute to background levels of waterborne illness and conducted a systematic review and meta-analysis to assess the impact of distribution system deficiencies on endemic GII.Methods: We reviewed published studies that compared direct tap water consumption to consumption of tap water re-treated at the point of use (POU) and studies of specific system deficiencies such as breach of physical or hydraulic pipe integrity and lack of disinfectant residual.Results: In settings with network malfunction, consumers of tap water versus POU-treated water had increased GII [incidence density ratio (IDR) = 1.34; 95% CI: 1.00, 1.79]. The subset of nonblinded studies showed a significant association between GII and tap water versus POU-treated water consumption (IDR = 1.52; 95% CI: 1.05, 2.20), but there was no association based on studies that blinded participants to their POU water treatment status (IDR = 0.98; 95% CI: 0.90, 1.08). Among studies focusing on specific network deficiencies, GII was associated with temporary water outages (relative risk = 3.26; 95% CI: 1.48, 7.19) as well as chronic outages in intermittently operated distribution systems (odds ratio = 1.61; 95% CI: 1.26, 2.07).Conclusions: Tap water consumption is associated with GII in malfunctioning distribution networks. System deficiencies such as water outages also are associated with increased GII, suggesting a potential health risk for consumers served by piped water networks.Citation: Ercumen A, Gruber JS, Colford JM Jr. 2014. Water distribution system deficiencies and gastrointestinal illness: a systematic review and meta-analysis. Environ Health Perspect 122:651–660; http://dx.doi.org/10.1289/ehp.1306912
In collaboration with a local non-profit organization, this study evaluated the expansion of a program that promoted and installed Mesita Azul, an ultraviolet-disinfection system designed to treat household drinking water in rural Mexico. We conducted a 15-month, cluster-randomized stepped wedge trial by randomizing the order in which 24 communities (444 households) received the intervention. We measured primary outcomes (water contamination and diarrhea) during seven household visits. The intervention increased the percentage of households with access to treated and safely stored drinking water (23–62%), and reduced the percentage of households with Escherichia coli contaminated drinking water (risk difference (RD): −19% [95% CI: −27%, −14%]). No significant reduction in diarrhea was observed (RD: −0.1% [95% CI: −1.1%, 0.9%]). We conclude that household water quality improvements measured in this study justify future promotion of the Mesita Azul, and that future studies to measure its health impact would be valuable if conducted in populations with higher diarrhea prevalence.
This study suggests that the 3 days following a beach visit may be the most relevant period for health outcome measurement in recreational water studies. Under the water quality conditions observed in this study, fecal indicator bacteria levels were not associated with swimmer illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.