BackgroundExercise and physical activity are key components of treatment for chronic respiratory diseases. However, the level of physical activity and adherence to exercise programs are low in people with these diseases. Active video games (AVGs) may provide a more engaging alternative to traditional forms of exercise.ObjectiveThis review examines the effectiveness of game-based interventions on physiological outcome measures, as well as adherence and enjoyment in subjects with chronic respiratory diseases.MethodsA systematic search of the literature was conducted, with full texts and abstracts included where they involved an AVG intervention for participants diagnosed with respiratory conditions. A narrative synthesis of included studies was performed. Additionally, meta-analysis comparing AVGs with traditional exercise was undertaken for 4 outcome measures: mean heart rate (HR) during exercise, peripheral blood oxygen saturation (SpO2) during exercise, dyspnea induced by the exercise, and enjoyment of the exercise.ResultsA total of 13 full-text papers corresponding to 12 studies were included in the review. Interventions predominantly used games released for the Nintendo Wii (8 studies) and Microsoft Xbox Kinect (3 studies). There were 5 studies that examined the acute effects of a single session of AVGs and 7 studies that examined the long-term effects after multiple sessions of AVGs. Trials conducted over more than 1 session varied in duration between 3 and 12 weeks. In these, AVG interventions were associated with either similar or slightly greater improvements in outcomes such as exercise capacity when compared with a traditional exercise control, and they also generally demonstrated improvements over baseline or nonintervention comparators. There were a few studies of unsupervised AVG interventions, but the reported adherence was high and maintained throughout the intervention period. Additionally, AVGs were generally reported to be well liked and considered feasible by participants.For outcome measures measured during a single exercise session, there was no significant difference between an AVG and traditional exercise for HR (mean difference 1.44 beats per minute, 95% CI –14.31 to 17.18), SpO2 (mean difference 1.12 percentage points, 95% CI –1.91 to 4.16), and dyspnea (mean difference 0.43 Borg units, 95% CI –0.79 to 1.66), but AVGs were significantly more enjoyable than traditional exercise (Hedges g standardized mean difference 1.36, 95% CI 0.04-2.68).ConclusionsThis review provides evidence that AVG interventions, undertaken for several weeks, can provide similar or greater improvements in exercise capacity and other outcomes as traditional exercise. Within a single session of cardiovascular exercise, an AVG can evoke similar physiological responses as traditional exercise modalities but is more enjoyable to subjects with chronic respiratory diseases. However, there is very limited evidence for adherence and effectiveness in long-term unsupervised trials, which should be the focus of future research.
Objective This systematic literature review aimed to identify factors that influence the implementation of electronic patient-reported outcome measures (ePROMs) and patient-reported experience measures (ePREMs) in healthcare settings. Introduction Improvements in health care through increased patient engagement have gained traction in recent years. Patient-reported outcome measures (PROMs) and patient-reported experience measures (PREMs) are tools used to improve the quality of care from the patient perspective. The influence of implementing PROMs and PREMs using electronic information systems (ePROMs and ePREMs) is not well understood. Inclusion criteria Studies with information related to the implementation of ePROMs and/or ePREMs with a focus on health-related services, irrespective of provider type, were included. Methods A literature search of peer-reviewed databases was conducted on the 24th of January 2022 for articles about barriers and facilitators of the implementation of ePROMs/ePREMs in healthcare settings. Two reviewers independently extracted relevant findings from the included studies and performed a descriptive code-based synthesis before collaboratively creating a final consensus set of code categories, which were then mapped to the consolidated framework of implementation research (CFIR). Study quality was appraised using a mixed-methods appraisal tool (MMAT). Results 24 studies were eligible for inclusion in the screening of 626 nonduplicate studies. Quality assessment using the MMAT revealed that 20/24 studies met at least 60% of the MMAT criteria. Ninety-six code categories were identified and mapped to the constructs across all CFIR domains. Conclusion To guide the effective implementation of ePROMs/ePREMs in healthcare settings, factors shown to influence their implementation have been summarised as an implementation checklist for adoption and use by clinicians, organisations, and policymakers.
Background People with chronic obstructive pulmonary disease (COPD) who are less active have lower quality of life, greater risk of exacerbations, and greater mortality than those who are more active. The effectiveness of physical activity interventions may facilitate the addition of game elements to improve engagement. The use of a co-design approach with people with COPD and clinicians as co-designers may also improve the effectiveness of the intervention. Objective The primary aim of this study is to evaluate the feasibility of a co-designed mobile game by examining the usage of the game, subjective measures of game engagement, and adherence to wearing activity trackers. The secondary aim of this study is to estimate the effect of the game on daily steps and daily moderate-to-vigorous physical activity (MVPA). Methods Participants with COPD who were taking part in the co-design of the active video game (n=9) acted as the experiment group, spending 3 weeks testing the game they helped to develop. Daily steps and MVPA were compared with a control group (n=9) of participants who did not co-design or test the game. Results Most participants (8/9, 89%) engaged with the game after downloading it. Participants used the game to record physical activity on 58.6% (82/141) of the days the game was available. The highest scores on the Intrinsic Motivation Inventory were seen for the value and usefulness subscale, with a mean of 6.38 (SD 0.6). Adherence to wearing Fitbit was high, with participants in both groups recording steps on >80% of days. Usage of the game was positively correlated with changes in daily steps but not with MVPA. Conclusions The co-designed mobile app shows promise as an intervention and should be evaluated in a larger-scale trial in this population.
Background: Vertebrate corneas feature a variety of microprojections, to which a tear film adheres. These microprojections are formed by folds in epithelial cell membranes, which increase surface area, stabilise the tear film and enhance movement of nutritional and waste products across cell membranes. Differences in corneal microprojections among vertebrates have been correlated with habitat and differ markedly between terrestrial and aquatic species. Methods: This study investigated epithelial microprojections of both the aerial (dorsal) and aquatic (ventral) corneal surfaces of the 'four-eyed fish' Anableps anableps using scanning electron microscopy. Results: The central region of the dorsal cornea, which projects above the water, had a density of 16,387 Ϯ 3,995 cells per mm 2 , while the central region of the ventral cornea (underwater) had a density of 22,428 Ϯ 6,387 cells per mm 2 , a difference that suggests an environmental adaptation along the two visual axes. Both corneal surfaces were found to possess microridges rather than microvilli or microplicae characteristic of terrestrial/ aerial vertebrates. Microridges were 142 Ϯ 9 nm wide and did not differ (p = 0.757) between dorsal and ventral corneas. Microridges were consistently separated by a distance of 369 Ϯ 9 nm across both corneas. Conclusion: Dorsal-ventral differences in corneal epithelial cell density in Anableps anableps suggest a difference in osmotic pressure of the two corneas. The modest differences in the microprojections indicate that the need to secure the tear film underlying each optical axis is of prime importance, due to the likelihood that a persistent layer of water normally covers both dorsal and ventral corneal surfaces and that maintaining a transparent optical pathway for vision is critical for a species prone to predation from both above and below the water's surface.Submitted: 27 January 2011 Revised: 2 September 2011 Accepted for publication: 11 September 2011Key words: amphibians, Anableps, cornea, Cyprinidae, eye lens, goldfish, microprojections, zebrafishThe corneal surface in the vertebrate eye features microprojections formed by folds of the epithelial cell membranes. These microprojections increase the surface area available for the transport of nutritional and waste products across the cell surface. Although the microprojections form a seemingly rough optical surface, this is neutralised by the smooth surface of the tear film or mucus that coats the cornea, thereby ensuring maintenance of a transparent optical interface. 2Aquatic and terrestrial environments typically present very different optical, osmotic and physico-mechanical problems to the cornea. In aquatic environments, the cornea contributes little to the refractive power of the eye due to the similarity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.