As the human genome project approaches completion, the challenge for mammalian geneticists is to develop approaches for the systematic determination of mammalian gene function. Mouse mutagenesis will be a key element of studies of gene function. Phenotype-driven approaches using the chemical mutagen ethylnitrosourea (ENU) represent a potentially efficient route for the generation of large numbers of mutant mice that can be screened for novel phenotypes. The advantage of this approach is that, in assessing gene function, no a priori assumptions are made about the genes involved in any pathway. Phenotype-driven mutagenesis is thus an effective method for the identification of novel genes and pathways. We have undertaken a genome-wide, phenotype-driven screen for dominant mutations in the mouse. We generated and screened over 26,000 mice, and recovered some 500 new mouse mutants. Our work, along with the programme reported in the accompanying paper, has led to a substantial increase in the mouse mutant resource and represents a first step towards systematic studies of gene function in mammalian genetics.
Of the many modern approaches to calculating evolutionary distance via models of genome rearrangement, most are tied to a particular set of genomic modeling assumptions and to a restricted class of allowed rearrangements. The “position paradigm”, in which genomes are represented as permutations signifying the position (and orientation) of each region, enables a refined model-based approach, where one can select biologically plausible rearrangements and assign to them relative probabilities/costs. Here, one must further incorporate any underlying structural symmetry of the genomes into the calculations and ensure that this symmetry is reflected in the model. In our recently-introduced framework of genome algebras, each genome corresponds to an element that simultaneously incorporates all of its inherent physical symmetries. The representation theory of these algebras then provides a natural model of evolution via rearrangement as a Markov chain. Whilst the implementation of this framework to calculate distances for genomes with “practical” numbers of regions is currently computationally infeasible, we consider it to be a significant theoretical advance: one can incorporate different genomic modeling assumptions, calculate various genomic distances, and compare the results under different rearrangement models. The aim of this paper is to demonstrate some of these features.
The algebraic properties of flattenings and subflattenings provide direct methods for identifying edges in the true phylogeny—and by extension the complete tree—using pattern counts from a sequence alignment. The relatively small number of possible internal edges among a set of taxa (compared to the number of binary trees) makes these methods attractive; however, more could be done to evaluate their effectiveness for inferring phylogenetic trees. This is the case particularly for subflattenings, and the work we present here makes progress in this area. We introduce software for constructing and evaluating subflattenings for splits, utilising a number of methods to make computing subflattenings more tractable. We then present the results of simulations we have performed in order to compare the effectiveness of subflattenings to that of flattenings in terms of split score distributions, and susceptibility to possible biases. We find that subflattenings perform similarly to flattenings in terms of the distribution of split scores on the trees we examined, but may be less affected by bias arising from both split size/balance and long branch attraction. These insights are useful for developing effective algorithms to utilise these tools for the purpose of inferring phylogenetic trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.