Abstract. We introduce and study the notions of translation bounded tempered distributions, and autocorrelation for a tempered distrubution. We further introduce the spaces of weakly, strongly and null weakly almost periodic tempered distributions and show that for weakly almost periodic tempered distributions the Eberlein decomposition holds. For translation bounded measures all these notions coincide with the classical ones. We show that tempered distributions with measure Fourier transform are weakly almost periodic and that for this class, the Eberlein decomposition is exactly the Fourier dual of the Lesbegue decomposition, with the Fourier-Bohr coefficients specifying the pure point part of the Fourier transform. We complete the project by looking at few interesting examples.
Of the many modern approaches to calculating evolutionary distance via models of genome rearrangement, most are tied to a particular set of genomic modeling assumptions and to a restricted class of allowed rearrangements. The “position paradigm”, in which genomes are represented as permutations signifying the position (and orientation) of each region, enables a refined model-based approach, where one can select biologically plausible rearrangements and assign to them relative probabilities/costs. Here, one must further incorporate any underlying structural symmetry of the genomes into the calculations and ensure that this symmetry is reflected in the model. In our recently-introduced framework of genome algebras, each genome corresponds to an element that simultaneously incorporates all of its inherent physical symmetries. The representation theory of these algebras then provides a natural model of evolution via rearrangement as a Markov chain. Whilst the implementation of this framework to calculate distances for genomes with “practical” numbers of regions is currently computationally infeasible, we consider it to be a significant theoretical advance: one can incorporate different genomic modeling assumptions, calculate various genomic distances, and compare the results under different rearrangement models. The aim of this paper is to demonstrate some of these features.
This paper considers some open questions related to the inverse problem of pure point diffraction, in particular, what types of objects may diffract, and which of these may exhibit the same diffraction. Some diverse objects with the same simple lattice diffraction are constructed, including a tempered distribution that is not a measure, and it is shown that there are uncountably many such objects in the diffraction solution class of any pure point diffraction measure with an infinite supporting set.
In a recent paper [11], Lenz and Moody presented a method for constructing families of real solutions to the inverse problem for a given pure point diffraction measure. Applying their technique and discussing some possible extensions, we present, in a non-technical manner, some examples of homometric structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.