Studies have shown that the location and structure of the simulated intertropical convergence zone (ITCZ) is sensitive to the treatment of sub-gridscale convection and cloud–radiation interactions. This sensitivity remains in idealized aquaplanet experiments with fixed surface temperatures. However, studies have not considered the role of cloud-radiative effects (CRE; atmospheric heating due to cloud–radiation interactions) in the sensitivity of the ITCZ to the treatment of convection. We use an atmospheric energy input (AEI) framework to explore how the CRE modulates the sensitivity of the ITCZ to convective mixing in aquaplanet simulations. Simulations show a sensitivity of the ITCZ to convective mixing, with stronger convective mixing favoring a single ITCZ. For simulations with a single ITCZ, the CRE maintains the positive equatorial AEI. To explore the role of the CRE further, we prescribe the CRE as either zero or a meridionally and diurnally varying climatology. Removing the CRE is associated with a reduced equatorial AEI and an increase in the range of convective mixing rates that produce a double ITCZ. Prescribing the CRE reduces the sensitivity of the ITCZ to convective mixing by 50%. In prescribed-CRE simulations, other AEI components, in particular the surface latent heat flux, modulate the sensitivity of the AEI to convective mixing. Analysis of the meridional moist static energy transport shows that a shallower Hadley circulation can produce an equatorward energy transport at low latitudes even with equatorial ascent.
Intraseasonal soil moisture variability has the potential to feed back onto the West Africa monsoon circulation through its influence on surface turbulent fluxes and planetary boundary‐layer characteristics. Using satellite observations and an atmospheric reanalysis, we investigate intraseasonal soil moisture–atmosphere feedbacks triggered by large‐scale dynamics within the West African monsoon. Surprisingly, even though the surface response across the Sahel to strong convection is short‐lived (days) and precipitation accumulations are spatially and temporally heterogeneous, a coherent regional‐scale surface response to intraseasonal variability is observed. This surface response then feeds back onto the West African monsoon circulation. For example, during a dry intraseasonal event, Sahelian surface soil moisture significantly decreases, which elevates surface temperatures by 1.5 °C and shifts the monsoon circulation southward by approximately 1.5° latitude. Also, during a wet event the surface moistens and cools which leads to a northward monsoon shift. Alongside a low‐level wind response, the African Easterly Jet (AEJ) also responds to surface changes due to variations in the meridional temperature gradient. For example, an increased temperature gradient during a dry event intensifies and shifts the AEJ southward. The combined response of low‐level monsoon westerlies and the AEJ impacts low‐level shear and characteristics of strong convection. Elevated low‐level shear during a dry event promotes an intensification of deep convection across southern West Africa. This study provides new insight into the sensitivity of the West African monsoon circulation to intraseasonal soil moisture feedbacks and encourages similar research in other regions. An improved understanding and model representation of soil moisture–atmosphere feedbacks has the potential to improve forecasts beyond daily time‐scales and enhance early warning systems.
Substantial intraseasonal precipitation variability is observed across the Tibetan Plateau (TP) during boreal summer associated with the subtropical jet location and the Silk Road pattern. Weather station data and satellite observations highlight a sensitivity of soil moisture and surface fluxes to this variability. During rain-free periods of two or more days, skin temperatures are shown to rise as the surface dries, signalling decreased evaporative fraction. Surface fluxes are further enhanced by relatively clear skies. In this study we use an atmospheric reanalysis to assess how this surface flux response across the TP influences local and remote conditions. Increased surface sensible heat flux induced by decreased soil moisture during a regional dry event leads to a deepening of the planetary boundary-layer and the development of a heat low. Consistent with previous studies, heat low characteristics exhibit pronounced diurnal variability driven by anomalous daytime surface warming. For example, low-level horizontal winds are weakest during the afternoon and intensify overnight when boundary-layer turbulence is minimal. The heat low favours an upper-tropospheric anticyclone which induces an upper-level Rossby wave and leads to negative upperlevel temperature anomalies across southern China. The Rossby wave intensifies the upper-level cyclonic circulation across central China, whilst upperlevel negative temperature anomalies across south China extends the west Pacific subtropical high westward. These circulation anomalies influence temperature and precipitation anomalies across much of China. The association between land-atmosphere interactions across the TP, large-scale atmospheric circulation characteristics, and precipitation in east Asia highlights the importance of intraseasonal soil moisture dynamics on the TP.
In recent years there has been substantial interest in improving the skill of subseasonal-to-seasonal (S2S; 2-8 weeks) forecasts, which sit between traditional weather and climate forecasts (Brunet et al., 2010;Vitart et al., 2017). A major source of global S2S predictability is provided by tropical intraseasonal oscillations (ISOs: Ding et al., 2011;Waliser et al., 2003), such as the Madden-Julian Oscillation (MJO), which produces rainfall fluctuations with a period of approximately 30-60 days (Madden & Julian, 1994). Accurate representation of the land surface and its interaction with the atmosphere is also key to developing skillful S2S forecasts. The state of the land surface (e.g., root zone soil moisture or leaf area) varies more slowly than the atmospheric state and affects the partitioning of the surface energy budget through changes in evapotranspiration, surface albedo and roughness. The land therefore provides a potential source of S2S predictability to the atmosphere (Dirmeyer
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.