High temperature pretreatment of coal-based mineral matter in an oxidizing environment significantly enhances the leaching characteristics of rare earth elements (REEs). A research study has found that the temperatures used in fluidized-bed combustion (FBC) of coal to produce electricity are near optimum for pre-treating the associated mineral matter prior to leaching to maximize the recovery of critical materials. Tests were performed on representative samples collected from preparation plants treating West Kentucky No. 13, Illinois No. 6, and Fire Clay coal seam sources as well as fly ash and bed ash samples from two FBC power plants. Acid leaching tests using 1.2M HCl at 75℃ were performed on both the coal and the FBC ash samples. Prior to leaching, the coal samples were pretreated at temperatures of 600℃, 750℃, and 900℃ in an oxidizing environment to study the effect on leaching characteristics. The results showed that pretreatment at 600℃ for 2 hours resulted in a significant increase in REE recovery from a range of 20-40% to about 80% for all coal sources. The leaching kinetics are characterized by a quick release of rare earth elements within the first few minutes of the process. For the West Kentucky No. 13 coal source, about 75% of REEs were leached in the first 15 min from the 1.4-1.8 specific gravity (SG) fraction that was calcined at 600℃. Additionally, the leaching kinetics of the major contaminant, i.e., Fe, were much lower than the REEs, which significantly benefits the efficiency of leaching and the downstream upgrading processes. REE leaching characteristics of the FBC ash samples were similar to that of the calcined coals. Mineralogy characterization showed that the degree of crystallinity for both the calcined coal and FBC samples were similar to the original associated mineral matter, which provided evidence for the advantage of using the FBC byproducts as REE feedstocks over pulverized coal boilers that utilize temperatures greater than 1200℃. These findings were used to develop a conceptual flowsheet that incorporates FBC technology and its typical combustion environment to enhance the feasibility of recovering critical materials from coal-based sources.
A model based in COMSOL Multiphysics consisting of an electrorefining cell was utilized to simulate copper electrorefining. Concentration and electrolyte density profiles were generated as electrochemical simulation results. Fluid velocity field, particle trajectories, and particle distribution maps were generated to study impurity particle behavior in electrolyte. A three factor designed set of boundary conditions was used to determine the effects of inlet flow rate, temperature, and current density on impurity particle behavior in electrolyte and the associated distribution on the cross section (slice) 100 microns away from the front surface of the cathode during copper electrorefining. The number of impurity particles on the cross section was counted for each set of boundary conditions. The model data for impurity particle distribution was compared with measured impurity particle contamination at the cathode surface, and the results show a very good correlation, which suggests the model is reasonable. The model results show the three factors have significant effects on the number of impurity particles on the cross section. The impurity particle counts at the corner positions of the slice are much higher than those at the center position of the slice. Possible explanations for the simulation results are proposed.
In this work we demonstrate the validity of a multi-physics model using COMSOL to predict the local current density distribution at the cathode of a copper electrowinning test cell. Important developments utilizing Euler-Euler bubbly flow with coupled Nernst-Planck transport equations allow additional insights into deposit characteristics and topographies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.