The environmental change experienced by many contemporary populations of organisms poses a serious risk to their survival. From the theory of evolutionary rescue, we predict that the combination of sex and genetic diversity should increase the probability of survival by increasing variation and thereby the probability of generating a type that can tolerate the stressful environment. We tested this prediction by comparing experimental populations of Chlamydomonas reinhardtii that differ in sexuality and in the initial amount of genetic diversity. The lines were serially propagated in an environment where the level of stress caused by salt increased over time from fresh water to the limits of marine conditions. In the long term, the combination of high diversity and obligate sexuality was most effective in supporting evolutionary rescue. Most of the adaptation to high-salt environments in the obligate sexual-high diversity lines had occurred by midway through the experiment, indicating that positive genetic correlations of adaptation to lethal stress with adaptation to sublethal stress greatly increased the probability of evolutionary rescue. The evolutionary rescue events observed in this study provide evidence that major shifts in ways of life can arise within short time frames through the action of natural selection in sexual populations.
Spontaneous mutations are the source of new genetic variation and are thus central to the evolutionary process. In molecular evolution and quantitative genetics, the nature of genetic variation depends critically on the distribution of effects of mutations on fitness and other quantitative traits. Spontaneous mutation accumulation (MA) experiments have been the principal approach for investigating the overall rate of occurrence and cumulative effect of mutations but have not allowed the phenotypic effects of individual mutations to be studied directly. Here, we crossed MA lines of the green alga Chlamydomonas reinhardtii with its unmutated ancestral strain to create haploid recombinant lines, each carrying an average of 50% of the accumulated mutations in a large number of combinations. With the aid of the genome sequences of the MA lines, we inferred the genotypes of the mutations, assayed their growth rate as a measure of fitness, and inferred the distribution of fitness effects (DFE) using a Bayesian mixture model. We infer that the DFE is highly leptokurtic (L-shaped). Of mutations with absolute fitness effects exceeding 1%, about one-sixth increase fitness in the laboratory environment. The inferred distribution of effects for deleterious mutations is consistent with a strong role for nearly neutral evolution. Specifically, such a distribution predicts that nucleotide variation and genetic variation for quantitative traits will be insensitive to change in the effective population size.
The degree to which evolutionary trajectories and outcomes are repeatable across independent populations depends on the relative contribution of selection, chance and history. Population size has been shown theoretically and empirically to affect the amount of variation that arises among independent populations adapting to the same environment. Here, we measure the contribution of selection, chance and history in different-sized experimental populations of the unicellular alga Chlamydomonas reinhardtii adapting to a high salt environment to determine which component of evolution is affected by population size. We find that adaptation to salt is repeatable at the fitness level in medium (N e ¼ 5 Â 10 4 ) and large (N e ¼ 4 Â 10 5 ) populations because of the large contribution of selection. Adaptation is not repeatable in small (N e ¼ 5 Â 10 3 ) populations because of large constraints from history. The threshold between stochastic and deterministic evolution in this case is therefore between effective population sizes of 10 3 and 10 4 . Our results indicate that diversity across populations is more likely to be maintained if they are small. Experimental outcomes in large populations are likely to be robust and can inform our predictions about outcomes in similar situations.
Since its discovery in 2006, the emerging infectious disease known as white-nose syndrome has killed millions of bats in North America, making it one of the most devastating wildlife epidemics in recorded history. We demonstrate that there has been as yet only spontaneous mutation across the North American population of P. destructans, and we find no indication of recombination. Thus, selective forces, which might otherwise impact pathogenic virulence, have so far had essentially no genetic variation on which to act. Our study confirmed the time of origin for the first and, thus far, only introduction of P. destructans to North America. This system provides an unprecedented opportunity to follow the evolution of a host-pathogen interaction unfolding in real time.
The history of life is punctuated by repeated periods of unusually rapid evolutionary diversification called adaptive radiation. The dynamics of diversity during a radiation reflect an overshooting pattern with an initial phase of exponential-like increase followed by a slower decline. Much attention has been paid to the factors that drive the increase phase, but far less is known about the causes of the decline phase. Decreases in diversity are rarely associated with climatic changes or catastrophic events, suggesting that they may be an intrinsic consequence of diversification. We experimentally identify the factors responsible for losses in diversity during the later stages of the model adaptive radiation of the bacterium Pseudomonas fluorescens. Proximately, diversity declines because of the loss of biofilm-forming niche specialist morphotypes. We show that this loss occurs despite the presence of strong divergent selection late in the radiation and is associated with continued adaptation of resident niche specialists to both the biotic and abiotic environments. These results suggest that losses of diversity in the latter stages of an adaptive radiation may be a general consequence of diversification through competition and lends support to the idea that the conditions favouring the emergence of diversity are different from those that ensure its long-term maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.