Evaluating the impact that airborne contamination associated with Athabasca oil sands (AOS) mining operations has on the surrounding boreal forest ecosystem requires a rigorous approach to source discrimination. This study presents a century-long historical record of source apportionment of polycyclic aromatic hydrocarbons (PAHs) in dated sediments from two headwater lakes located approximately 40 and 55 km east from the main area of open pit mining activities. Concentrations of the 16 Environmental Protection Agency (EPA) priority PAHs in addition to retene, dibenzothiophene (DBT), and six alkylated groups were measured, and both PAH molecular diagnostic ratios and carbon isotopic signatures (δ(13)C) of individual PAHs were used to differentiate natural from anthropogenic inputs. Although concentrations of PAHs in these lakes were low and below the Canadian Council of Ministers of the Environment (CCME) guidelines, diagnostic ratios pointed to an increasingly larger input of petroleum-derived (i.e., petrogenic) PAHs over the past 30 years concomitant with δ(13)C values progressively shifting to the value of unprocessed AOS bitumen. This petrogenic source is attributed to the deposition of bitumen in dust particles associated with wind erosion from open pit mines.
Enhanced phosphorus (P) export from land into streams and lakes is a primary factor driving the expansion of deep-water hypoxia in lakes during the Anthropocene. However, the interplay of regional scale environmental stressors and the lack of long-term instrumental data often impede analyses attempting to associate changes in land cover with downstream aquatic responses. Herein, we performed a synthesis of data that link paleolimnological reconstructions of lake bottom-water oxygenation to changes in land cover/use and climate over the past 300 years to evaluate whether the spread of hypoxia in European lakes was primarily associated with enhanced P exports from growing urbanization, intensified agriculture, or climatic change. We showed that hypoxia started spreading in European lakes around CE 1850 and was greatly accelerated after CE 1900. Socioeconomic changes in Europe beginning in CE 1850 resulted in widespread urbanization, as well as a larger and more intensively cultivated surface area. However, our analysis of temporal trends demonstrated that the onset and intensification of lacustrine hypoxia were more strongly related to the growth of urban areas than to changes in agricultural areas and the application of fertilizers. These results suggest that anthropogenically triggered hypoxia in European lakes was primarily caused by enhanced P discharges from urban point sources. To date, there have been no signs of sustained recovery of bottom-water oxygenation in lakes following the enactment of European water legislation in the 1970s to 1980s, and the subsequent decrease in domestic P consumption.Anthropocene | lake hypoxia | land cover/uses | meta-analysis | varves C hanges in land cover and land use have been identified as important drivers of phosphorus (P) transfers from terrestrial to aquatic systems, resulting in significant impacts on water resources (1-3). In post-World War II Europe, changes in land cover, land use, and P utilization caused widespread eutrophication of freshwaters (3). Elevated rates of P release from point sources to surface water bodies increased in step with population increases, with the novel use of P in domestic detergents and with enhanced connectivity of households to sewage systems that generated concentrated effluents (4). The intensification of agriculture and drastic increased use of fertilizers from industrial and manure sources resulted in elevated P concentrations in runoff from diffuse sources (4). These trends have now metastasized from Europe and North America to most nations, which explains the almost global development of eutrophication problems in surface waters (1).Much of our understanding regarding the interactions between changes in land cover/use, climate, and lake eutrophication comes from detailed studies of individual lakes (5), modeling exercises (1), and/or regional-scale syntheses of instrumental data (6, 7); these studies are largely based on relatively short time series (8). Depending on the multitudinous local differences in catchment and lake mor...
Clumped isotopes (Δ 47) analysis in carbonates is becoming widespread across the geochemical community as a geothermometer that also allows for the reconstruction of the precipitating fluid δ 18 O composition. While initial Δ 47-temperature relationship discrepancies between laboratories have been considerably reduced over the past 10 years, theoretical temperature calibration and laboratory experimental efforts have still not converged to common ground. Moreover, a lack of high temperature anchor points has weakened its application to high temperature calcite formation. Here we present a temperature calibration for carbonate clumped isotopes between 5 and 726°C, using synthetically precipitated and heated calcites, to extend the calcite Δ 47-temperature calibration to higher temperatures. By showing a strong agreement between the empirical calibration proposed here, theoretical and all recently published T-calibrations made using a full carbonate referencing scheme, this study: (1) provides a calibration allowing more precise application in high temperature geological systems, (2) further supports the improvement of inter-laboratory comparison by using carbonate standards, (3) reconciles empirical temperature calibrations with theory.
The continued growth of mining and upgrading activities in Canada's Athabasca oil sands (AOS) region has led to concerns about emissions of contaminants such as polycyclic aromatic hydrocarbons (PAHs). Whereas a recent increase in PAH emissions has been demonstrated within around 50 km of the main center of surface mining and upgrading operations, the exact nature of the predominant source(s) and the geographical extent of the deposition are still under debate. Here, we report a century-long source apportionment of PAHs using dual (δ(2)H, δ(13)C) compound-specific isotope analysis on phenanthrene deposited in a lake from the Athabasca sector of the Peace-Athabasca Delta situated ∼150 km downstream (north) of the main center of mining operations. The isotopic signatures in the core were compared to those of the main potential sources in this region (i.e., unprocessed AOS bitumen, upgrader residual coke, forest fires, coal, gasoline and diesel soot). A significant concurrent increase (∼55.0‰) in δ(2)H and decrease (∼1.5‰) in δ(13)C of phenanthrene over the last three decades pointed to an increasingly greater component of petcoke-derived PAHs. This study is the first to quantify long-range (i.e., >100 km) transport of a previously under-considered anthropogenic PAH source in the AOS region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.