The COVID-19 pandemic has revealed critical knowledge gaps in our understanding of and a need to update the traditional view of transmission pathways for respiratory viruses. The long-standing definitions of droplet and airborne transmission do not account for the mechanisms by which virus-laden respiratory droplets and aerosols travel through the air and lead to infection. In this Review, we discuss current evidence regarding the transmission of respiratory viruses by aerosols—how they are generated, transported, and deposited, as well as the factors affecting the relative contributions of droplet-spray deposition versus aerosol inhalation as modes of transmission. Improved understanding of aerosol transmission brought about by studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires a reevaluation of the major transmission pathways for other respiratory viruses, which will allow better-informed controls to reduce airborne transmission.
The swimming behavior of the nematode Caenorhabditis elegans is investigated in aqueous solutions of increasing viscosity. Detailed flow dynamics associated with the nematode's swimming motion as well as propulsive force and power are obtained using particle tracking and velocimetry methods. We find that C. elegans delivers propulsive thrusts on the order of a few nanonewtons. Such findings are supported by values obtained using resistive force theory; the ratio of normal to tangential drag coefficients is estimated to be approximately 1.4. Over the range of solutions investigated here, the flow properties remain largely independent of viscosity. Velocity magnitudes of the flow away from the nematode body decay rapidly within less than a body length and collapse onto a single master curve. Overall, our findings support that C. elegans is an attractive living model to study the coupling between small-scale propulsion and low Reynolds number hydrodynamics. The swimming behavior of the nematode Caenorhabditis elegans is investigated in aqueous solutions of increasing viscosity. Detailed flow dynamics associated with the nematode's swimming motion as well as propulsive force and power are obtained using particle tracking and velocimetry methods. We find that C. elegans delivers propulsive thrusts on the order of a few nanonewtons. Such findings are supported by values obtained using resistive force theory; the ratio of normal to tangential drag coefficients is estimated to be approximately 1.4. Over the range of solutions investigated here, the flow properties remain largely independent of viscosity. Velocity magnitudes of the flow away from the nematode body decay rapidly within less than a body length and collapse onto a single master curve. Overall, our findings support that C. elegans is an attractive living model to study the coupling between small-scale propulsion and low Reynolds number hydrodynamics. Disciplines Engineering | Mechanical Engineering
Undulatory locomotion, as seen in the nematode Caenorhabditis elegans, is a common swimming gait of organisms in the low Reynolds number regime, where viscous forces are dominant. Although the nematode's motility is expected to be a strong function of its material properties, measurements remain scarce. Here, the swimming behavior of C. elegans is investigated in experiments and in a simple model. Experiments reveal that nematodes swim in a periodic fashion and generate traveling waves that decay from head to tail. The model is able to capture the experiments' main features and is used to estimate the nematode's Young's modulus E and tissue viscosity eta. For wild-type C. elegans, we find E approximately 3.77 kPa and eta approximately -860 Pa.s; values of eta for live C. elegans are negative because the tissue is generating rather than dissipating energy. Results show that material properties are sensitive to changes in muscle functional properties, and are useful quantitative tools with which to more accurately describe new and existing muscle mutants.
The inhalation of micron-sized aerosols into the lung's acinar region may be recognized as a possible health risk or a therapeutic tool. In an effort to develop a deeper understanding of the mechanisms responsible for acinar deposition, we have numerically simulated the transport of nondiffusing fine inhaled particles (1 mum and 3 microm in diameter) in two acinar models of varying complexity: (i) a simple alveolated duct and (ii) a space-filling asymmetrical acinar branching tree following the description of lung structure by Fung (1988, "A Model of the Lung Structure and Its Validation," J. Appl. Physiol., 64, pp. 2132-2141). Detailed particle trajectories and deposition efficiencies, as well as acinar flow structures, were investigated under different orientations of gravity, for tidal breathing motion in an average human adult. Trajectories and deposition efficiencies inside the alveolated duct are strongly related to gravity orientation. While the motion of larger particles (3 microm) is relatively insensitive to convective flows compared with the role of gravitational sedimentation, finer 1 microm aerosols may exhibit, in contrast, complex kinematics influenced by the coupling between (i) flow reversal due to oscillatory breathing, (ii) local alveolar flow structure, and (iii) streamline crossing due to gravity. These combined mechanisms may lead to twisting and undulating trajectories in the alveolus over multiple breathing cycles. The extension of our study to a space-filling acinar tree was well suited to investigate the influence of bulk kinematic interaction on aerosol transport between ductal and alveolar flows. We found the existence of intricate trajectories of fine 1 microm aerosols spanning over the entire acinar airway network, which cannot be captured by simple alveolar models. In contrast, heavier 3 microm aerosols yield trajectories characteristic of gravitational sedimentation, analogous to those observed in the simple alveolated duct. For both particle sizes, however, particle inhalation yields highly nonuniform deposition. While larger particles deposit within a single inhalation phase, finer 1 microm particles exhibit much longer residence times spanning multiple breathing cycles. With the ongoing development of more realistic models of the pulmonary acinus, we aim to capture some of the complex mechanisms leading to deposition of inhaled aerosols. Such models may lead to a better understanding toward the optimization of pulmonary drug delivery to target specific regions of the lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.