The motion of nonholonomic mobile manipulators (NMMs) is inherently constrained by joint limits, joint velocity limits, self-collisions and singularities. Most motion planning algorithms consider some of the aforementioned constraints, however, a unified framework to deal with all of them is lacking. This paper proposes a motion planning solution for the kinematic trajectory tracking of redundant NMMs that include all the constraints needed for practical implementation, which improves the manipulability of both the entire system and the manipulator to prevent singularities. Experiments using a 10-DOF NMM demonstrate the good performance of the proposed method for executing 6-DOF trajectories while satisfying all the constraints and simultaneously maximizing manipulability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.