Thioredoxins (TRXs) mediate light-dependent activation of primary photosynthetic reactions in plant chloroplasts by reducing disulphide bridges in redox-regulated enzymes. Of the two plastid TRX systems, the ferredoxin-TRX system consists of ferredoxin-thioredoxin reductase (FTR) and multiple TRXs, while the NADPH-dependent thioredoxin reductase (NTRC) contains a complete TRX system in a single polypeptide. Using Arabidopsis plants overexpressing or lacking a functional NTRC, we have investigated the redundancy and interaction between the NTRC and Fd-TRX systems in regulation of photosynthesis in vivo. Overexpression of NTRC raised the CO 2 fixation rate and lowered non-photochemical quenching and acceptor side limitation of PSI in low light conditions by enhancing the activation of chloroplast ATP synthase and TRX-regulated enzymes in Calvin-Benson cycle (CBC). Overexpression of NTRC with an inactivated NTR or TRX domain partly recovered the phenotype of knockout plants, suggesting crosstalk between the plastid TRX systems. NTRC interacted in planta with fructose-1,6-bisphosphatase, phosphoribulokinase and CF 1 γ subunit of the ATP synthase and with several chloroplast TRXs. These findings indicate that NTRC-mediated regulation of the CBC and ATP synthesis occurs both directly and through interaction with the ferredoxin-TRX system and is crucial when availability of light is limiting photosynthesis.
The NADPH-dependent thioredoxin reductase C (NTRC) is involved in redox-related regulatory processes in chloroplasts and nonphotosynthetic active plastids. Together with 2-cysteine peroxiredoxin, it forms a two-component peroxide-detoxifying system that acts as a reductant under stress conditions. NTRC stimulates in vitro activity of magnesium protoporphyrin IX monomethylester (MgPMME) cyclase, most likely by scavenging peroxides. Reexamination of tetrapyrrole intermediate levels of the Arabidopsis (Arabidopsis thaliana) knockout ntrc reveals lower magnesium protoporphyrin IX (MgP) and MgPMME steadystate levels, the substrate and the product of MgP methyltransferase (CHLM) preceding MgPMME cyclase, while MgP strongly accumulates in mutant leaves after 5-aminolevulinic acid feeding. The ntrc mutant has a reduced capacity to synthesize 5-aminolevulinic acid and reduced CHLM activity compared with the wild type. Although transcript levels of genes involved in chlorophyll biosynthesis are not significantly altered in 2-week-old ntrc seedlings, the contents of glutamyl-transfer RNA reductase1 (GluTR1) and CHLM are reduced. Bimolecular fluorescence complementation assay confirms a physical interaction of NTRC with GluTR1 and CHLM. While ntrc contains partly oxidized CHLM, the wild type has only reduced CHLM. As NTRC also stimulates CHLM activity in vitro, it is proposed that NTRC has a regulatory impact on the redox status of conserved cysteine residues of CHLM. It is hypothesized that a deficiency of NTRC leads to a lower capacity to reduce cysteine residues of GluTR1 and CHLM, affecting the stability and, thereby, altering the activity in the entire tetrapyrrole synthesis pathway.During the last decades, almost all enzymes of tetrapyrrole biosynthesis and their complex network of transcriptional regulation have been comprehensively studied (Tanaka et al., 2011). These studies revealed a complex control of the expression of genes encoding enzymes in the light-regulated chlorophyll (Chl)-synthesizing branch of tetrapyrrole metabolism. In brief, 5-aminolevulinic acid (ALA) is synthesized in a transfer RNA (tRNA) GLU -mediated pathway, and eight molecules of ALA are ultimately converted in a series of enzymatic steps to protoporphyrin IX. The polymeric magnesium (Mg) chelatase complex consisting of the three different subunits CHLH, CHLI, and CHLD directs protoporphyrin IX into the Mg branch of tetrapyrrole biosynthesis. Methylation of magnesium protoporphyrin (MgP) by MgP methyltransferase (CHLM) at the C13 of pyrrole ring C initiates the formation of the typical fifth ring. The product of this step, magnesium protoporphyrin monomethylester (MgPMME), is then converted to divinyl protochlorophyllide (PChlide) by an oxidative cyclase complex. NADPH:protochlorophyllide oxidoreductase (POR) synthesizes chlorophyllide (Chlide). PChlide and Chlide are most likely the main substrates of a divinyl reductase that reduces the C7-C8 double bond, forming a monovinyl product. The two final steps of Chl a and b synthesis are likely ...
Plant chloroplasts have versatile thioredoxin systems including two thioredoxin reductases and multiple types of thioredoxins. Plastid-localized NADPH-dependent thioredoxin reductase (NTRC) contains both reductase (NTRd) and thioredoxin (TRXd) domains in a single polypeptide and forms homodimers. To study the action of NTRC and NTRC domains in vivo, we have complemented the ntrc knockout line of Arabidopsis with the wild type and full-length NTRC genes, in which 2-Cys motifs either in NTRd, or in TRXd were inactivated. The ntrc line was also transformed either with the truncated NTRd or TRXd alone. Overexpression of wild-type NTRC promoted plant growth by increasing leaf size and biomass yield of the rosettes. Complementation of the ntrc line with the full-length NTRC gene containing an active reductase but an inactive TRXd, or vice versa, recovered wild-type chloroplast phenotype and, partly, rosette biomass production, indicating that the NTRC domains are capable of interacting with other chloroplast thioredoxin systems. Overexpression of truncated NTRd or TRXd in ntrc background did not restore wild-type phenotype. Modeling of the three-dimensional structure of the NTRC dimer indicates extensive interactions between the NTR domains and the TRX domains further stabilize the dimeric structure. The long linker region between the NTRd and TRXd, however, allows flexibility for the position of the TRXd in the dimer. Supplementation of the TRXd in the NTRC homodimer model by free chloroplast thioredoxins indicated that TRXf is the most likely partner to interact with NTRC. We propose that overexpression of NTRC promotes plant biomass yield both directly by stimulation of chloroplast biosynthetic and protective pathways controlled by NTRC and indirectly via free chloroplast thioredoxins. Our data indicate that overexpression of chloroplast thiol redox-regulator has a potential to increase biofuel yield in plant and algal species suitable for sustainable bioenergy production.
Plastid-localized NADPH-dependent thioredoxin reductase C (NTRC) is a unique NTR enzyme containing both reductase and thioredoxin domains in a single polypeptide. Arabidopsis thaliana NTRC knockout lines (ntrc) show retarded growth, especially under short-day (SD) photoperiods. This study identified chloroplast processes that accounted for growth reduction in SD-acclimated ntrc. The strongest reduction in ntrc growth occurred under photoperiods with nights longer than 14h, whereas knockout of the NTRC gene did not alter the circadian-clock-controlled growth of Arabidopsis. Lack of NTRC modulated chloroplast reactive oxygen species (ROS) metabolism, but oxidative stress was not the primary cause of retarded growth of SD-acclimated ntrc. Scarcity of starch accumulation made ntrc leaves particularly vulnerable to photoperiods with long nights. Direct interaction of NTRC and ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was confirmed by yeast two-hybrid analysis. The ntrc line was not able to maximize starch synthesis during the light period, which was particularly detrimental under SD conditions. Acclimation of Arabidopsis to SD conditions also involved an inductive rise of ROS production in illuminated chloroplasts that was not counterbalanced by the activation of plastidial anti-oxidative systems. It is proposed that knockout of NTRC challenges redox regulation of starch synthesis, resulting in stunted growth of the mutant lines acclimated to the SD photoperiod.
32Linear electron transport in the thylakoid membrane drives both photosynthetic NADPH and ATP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.