In this paper experimentally determined temporary over voltages in the electrical power system of Yugoslavia due to: earth faults, load droppings performances with incomplete phases, Ferranti effects, switching-in unloaded transformers, energizations of overhead lines terminated with unloaded transformers and another switching operations are considered. On the basis of their analysis, the measures and the means for their reduction and prevention are given.
The subject of this paper is the mutual comparison of switching energy losses in cascode gallium nitride HEMT and silicon "superjunction" MOSFET transistor, both designed for a maximum operating voltage of 650 V. For the purpose of analysis the transistor switching characteristics, the double pulse test method was implemented. Detailed computer simulation models developed in programs of the SPICE family were used. Data on transient turn -on and turn-off processes were generated by LTspice simulation tool, in a wide range of drain currents, using two different gate resistance values for driving the transistors under test. The obtained results indicate superior switching characteristics of gallium nitride devices in comparison to silicon components, especially during the high drain current transistor operation. During the one transistor switching cycle, the total energy losses in the GaN HEMT were simulated, for a drain current of 30 A, and found to be five to eight times lower when compared to tested Si MOSFET transistor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.