Matter-wave interferometry is a powerful tool for high-precision measurements of the quantum properties of atoms, many-body phenomena and gravity. The most precise matter-wave interferometers exploit the excellent localization in momentum space and coherence of the degenerate gases. Further enhancement of the sensitivity and reduction of complexity are crucial conditions for the success and widening of their applications. Here we introduce a multistate interferometric scheme that offers advances in both these aspects. The coherent coupling between Bose-Einstein condensates in different Zeeman states is used to generate high-harmonic output signals with an enhanced resolution and the maximum possible interferometric visibility. We demonstrate the realization of such an interferometer as a compact, easy to use, atomchip device. This provides an alternative method for the measurement of the light-atom and surface-atom interactions and enables the application of multiparameter sensing schemes in cold-atom interferometry.
In non-invasive ventilation, continuous monitoring of respiratory volumes is essential. Here, we present a method for the measurement of respiratory volumes by a single fiber-grating sensor of bending and provide the proof-of-principle by applying a calibration-test measurement procedure on a set of 18 healthy volunteers. Results establish a linear correlation between a change in lung volume and the corresponding change in a local thorax curvature. They also show good sensor accuracy in measurements of tidal and minute respiratory volumes for different types of breathing. The proposed technique does not rely on the air flow through an oronasal mask or the observation of chest movement by a clinician, which distinguishes it from the current clinical practice.
We introduce a discrete model for binary spin-orbit-coupled (SOC) Bose-Einstein condensates (BEC) trapped in a deep one-dimensional optical lattice. Two different types of the couplings are considered, with spatial derivatives acting inside each species, or between the species. The discrete system with inter-site couplings dominated by the SOC, while the usual hopping is negligible, emulates condensates composed of extremely heavy atoms, as well as those with opposite signs of the effective atomic masses in the two components. Stable localized composite states of miscible and immiscible types are constructed. The effect of the SOC on the immiscibilitymiscibility transition in the localized complexes, which emulates the phase transition between insulating and conducting states in semiconductors, is studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.