Herein, we report the design and characterization of guanosine-containing self-assembling nucleopeptides that form nanosheets and nanofibers. Through spectroscopy and microscopy analysis, we propose that the peptide component of the nucleopeptide drives the assembly into β-sheet structures with hydrogen-bonded guanosine forming additional secondary structures cooperatively within the peptide framework. Interestingly, the distinct supramolecular morphologies are driven not by metal cation responsiveness common to guanine-based materials, but by the C-terminal peptide chemistry. This work highlights the structural diversity of self-assembling nucleopeptides and will help advance the development of applications for these supramolecular guanosine-containing nucleopeptides.
An iterative step-growth addition method was used to expedite the gram-scale synthesis of main-chain polyviologens by several days, while also producing the longest main-chain polyviologen (i.e., 26 viologen subunits) reported...
Although on-demand cargo release has been demonstrated in a wide range of microparticle platforms, many existing methods lack specific loading interactions and/or undergo permanent damage to the microparticle to release...
Although on-demand cargo release has been demonstrated in a wide range of microparticle platforms, many existing methods lack specific loading interactions and/or undergo permanent damage to the microparticle to release the cargo. Here, we report a novel method for electrostatically loading negatively charged molecular cargo in oligoviologen-crosslinked microparticles, wherein the cargo can be released upon activation by visible light. A water-in-oil (W/O) emulsion polymerization method was used to fabricate narrowly dispersed microparticles crosslinked by a dicationic viologen-based dimer and a poly(ethylene glycol) diacrylate. A zinc-tetraphenyl porphyrin photocatalyst was also polymerized into the microparticle and used to photochemically reduce the viologen subunits to their monoradical cations through a visible-light-mediated photoredox mechanism with triethanolamine (TEOA) as a sacrificial reductant. The microparticles were characterized by microscopy methods revealing uniform, spherical microparticles 481 ± 20.9 nm in diameter. Negatively charged molecular cargo (methyl orange, MO) was electrostatically loaded into the microparticles through counteranion metathesis. Upon irradiation with blue (450 nm) light, the photo-reduced viologen crosslinker subunits lose positive charges, resulting in release of the anionic MO cargo. Controlled release of the dye, as tracked by absorption spectroscopy, was observed over time, yielding release of up to 40% of the cargo in 2d and 60% in 5d in single dynamic dialysis experiment. However, full release of cargo was achieved upon transferring the microparticles to a fresh TEOA solution after the initial 5d period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.