Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200 genetic loci associated with BP are known. Here, we perform a multi-stage genome-wide association study for BP (max N = 289,038) principally in East Asians and meta-analysis in East Asians and Europeans. We report 19 new genetic loci and ancestry-specific BP variants, conforming to a common ancestry-specific variant association model. At 10 unique loci, distinct non-rare ancestry-specific variants colocalize within the same linkage disequilibrium block despite the significantly discordant effects for the proxy shared variants between the ethnic groups. The genome-wide transethnic correlation of causal-variant effect-sizes is 0.898 and 0.851 for systolic and diastolic BP, respectively. Some of the ancestry-specific association signals are also influenced by a selective sweep. Our results provide new evidence for the role of common ancestry-specific variants and natural selection in ethnic differences in complex traits such as BP.
Background Diastolic dysfunction is one important causal factor for heart failure with preserved ejection fraction, yet the metabolic signature associated with this subclinical phenotype remains unknown. Methods and Results Ultra‐high‐performance liquid chromatography–tandem mass spectroscopy was used to conduct untargeted metabolomic analysis of fasting serum samples in 1050 white and black participants of the BHS (Bogalusa Heart Study). After quality control, 1202 metabolites were individually tested for association with 5 echocardiographic measures of left ventricular diastolic function using multivariable‐adjusted linear regression. Measures of left ventricular diastolic function included the ratio of peak early filling velocity to peak late filling velocity, ratio of peak early filling velocity to mitral annular velocity, deceleration time, isovolumic relaxation time, and left atrial maximum volume index ( LAVI ). Analyses adjusted for multiple cardiovascular disease risk factors and used Bonferroni‐corrected alpha thresholds. Eight metabolites robustly associated with left ventricular diastolic function in the overall population and demonstrated consistent associations in white and black study participants. N‐formylmethionine (B=0.05; P =1.50×10 −7 ); 1‐methylhistidine (B=0.05; P =1.60×10 −7 ); formiminoglutamate (B=0.07; P =5.60×10 −7 ); N2, N5‐diacetylornithine (B=0.05; P =1.30×10 −7 ); N‐trimethyl 5‐aminovalerate (B=0.04; P =5.10×10 −6 ); 5‐methylthioadenosine (B=0.04; P =1.40×10 −5 ); and methionine sulfoxide (B=0.04; P =3.80×10 −6 ) were significantly associated with the natural log of the ratio of peak early filling velocity to mitral annular velocity. Butyrylcarnitine (B=3.18; P =2.10×10 −6 ) was significantly associated with isovolumic relaxation time. Conclusions The current study identified novel findings of metabolite associations with left ventricular diastolic function, suggesting that the serum metabolome, and its underlying biological pathways, may be implicated in heart failure with preserved ejection fraction pathogenesis.
Objective: To identify novel and confirm previously reported metabolites associated with SBP, DBP, and hypertension in a biracial sample of Bogalusa Heart Study (BHS) participants. Methods: We employed untargeted, ultra-high performance liquid chromatography tandem mass spectroscopy metabolomics profiling among 1249 BHS participants (427 African-Americans and 822 whites) with BP and covariable data collected during the 2013 to 2016 visit cycle. A total of 1202 metabolites were tested for associations with continuous and binary BP phenotypes using multiple linear and logistic regression models, respectively, in overall and race-stratified analyses. Results: A total of 24 novel metabolites robustly associated with BP, achieving Bonferroni-corrected P less than 4.16 × 10−5 in the overall analysis and consistent effect sizes across race groups. The identified metabolites included three amino acid and nucleotide metabolites from histidine, pyrimidine, or tryptophan metabolism sub-pathways, seven cofactor and vitamin or xenobiotic metabolites from the ascorbate and aldarate metabolism, bacterial/fungal, chemical, and food component sub-pathways, 10 lipid metabolites from the eicosanoid, phosphatidylcholine, phosphatidylethanolamine, and sphingolipid metabolism sub-pathways, and four still unnamed metabolites. Six previously described metabolites were robustly confirmed by our study (Bonferroni-corrected P < 4.95 × 10−4 and consistent effect directions across studies). Furthermore, previously reported metabolites for SBP, DBP, and hypertension demonstrated 5.92-fold, 4.77-fold, and 4.54-fold enrichment for nominally significant signals in the BHS (P = 3.08 × 10−10, 5.93 × 10−8, and 2.30 × 10−8, respectively). Conclusion: In aggregate, our study provides new information about potential molecular mechanisms underlying BP regulation. We also demonstrate reproducibility of findings across studies despite differences in study populations and metabolite profiling methods.
We examined the association between genetic risk score (GRS) for blood pressure (BP), based on single nucleotide polymorphisms identified in previous BP genome-wide association study meta-analyses, and salt and potassium sensitivity of BP among participants of the GenSalt study (Genetic Epidemiology Network of Salt Sensitivity). The GenSalt study was conducted among 1906 participants who underwent a 7-day low-sodium (51.3 mmol sodium/d), 7-day high-sodium (307.8 mmol sodium/d), and 7-day high-sodium plus potassium (60 mmol potassium/d) intervention. BP was measured 9× at baseline and at the end of each intervention period using a random zero sphygmomanometer. Associations between systolic BP (SBP), diastolic BP, and mean arterial pressure GRS and respective SBP, diastolic BP, and mean arterial pressure responses to the dietary interventions were assessed using mixed linear regression models that accounted for familial dependencies and adjusted for age, sex, field center, body mass index, and baseline BP. As expected, baseline SBP, diastolic BP, and mean arterial pressure significantly increased per quartile increase in GRS (=2.7×10, 9.8×10, and 6.4×10, respectively). In contrast, increasing GRS quartile conferred smaller SBP, diastolic BP, and mean arterial pressure responses to the low-sodium intervention (=1.4×10, 0.02, and 0.06, respectively) and smaller SBP responses to the high-sodium and potassium interventions (=0.10 and 0.05). In addition, overall findings were similar when examining GRS as a continuous measure. Contrary to our initial hypothesis, we identified an inverse relationship between BP GRS and salt and potassium sensitivity of BP. These data may provide novel implications on the relationship between BP responses to dietary sodium and potassium and hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.