Analysis of oxylipins derived from fatty acids may provide insight into the biological effects of dietary lipids beyond their effects on tissue fatty acid profiles. We have previously observed that diets with higher amounts of α-linolenic acid (ALA; 18:3n3) are associated with reduced obesity-related glomerulopathy (ORG). Therefore, to examine the renal oxylipin profile, the effects of dietary linoleic acid (LA; 18:2n6) and ALA on oxylipins and renal phospholipid fatty acid composition, and the relationship between oxylipins and ORG, diet-induced obese rats displaying ORG were fed 8 different diets for 8 wk as follows (oil/oil = combination of two oils) [shown as ALA/LA (in g) per 100 g oil]: canola/flax (20/18), canola (8/18), soy (9/53), high-oleic canola/canola (5/16), high-oleic canola (2/15), lard/soy (1/8), and safflower (0.2/73). Targeted lipidomic analysis by HPLC-tandem mass spectrometry revealed that LA and ALA oxylipins comprised 60% of the total renal oxylipin profile examined. Of the >60 oxylipins screened, only those derived either directly or indirectly from ALA were associated with less glomerulomegaly, indicative of reduced ORG progression. Both the amount and ratio of dietary LA and ALA influenced renal polyunsaturated fatty acids (PUFAs); in contrast, only fatty acid amount altered oxylipins derived from these fatty acids, but there was no apparent competition by LA or ALA on their formation. Dietary LA incorporation into renal phospholipids was higher than for ALA, but ALA oxylipin:ALA ratios were higher than the analogous LA ratios for select lipoxygenase reactions. This indicates that the effect of dietary ALA on renal oxylipins exceeded what was reflected in renal PUFA composition. In conclusion, dietary LA and ALA have differential effects on renal oxylipins and PUFAs, and ALA-derived oxylipins are associated with renoprotection in this model of ORG.
The plasma pharmacokinetics, lung tissue to plasma concentration ratios, and depletion profiles in edible tissue (liver, muscle, kidney, fat and injection site) for a single subcutaneous dose of a novel macrolide antibiotic, CP-163505 (20-[3-dimethylaminopropyl(L-alanyl)amino]-20-deoxo-repromicin), were investigated in crossbred beef cattle. Mean peak plasma concentration of 2.5 +/- 0.4 micrograms/mL, occurring at 0.5 h, was found for CP-163505 following a 5 mg/kg dose (n = 5). The pharmacokinetic profile consisted of a distribution phase, followed by an extended terminal elimination phase (t1/2 of 19 h). The disposition of CP-163505 was characterized by distribution from the plasma into the tissue resulting in lung to plasma ratios of 103 and 87 at 72 h following a single 5 or 10 mg/kg dose, respectively. The depletion of CP-163505 from edible tissues was determined following administration of tritiated CP-163505 at a dose of 10 mg/kg. On day 42, the liver contained the highest mean concentration of total tritium residues, 5.9 +/- 3.4 micrograms/g. CP-163505 was determined to be a significant component of the total residues in liver with 72% on day 3 and 50% on day 42. Three metabolites of CP-163505 were identified by liquid chromatography with mass spectrometry (LC/MS/MS) in liver samples: loss of alanine, formation of an hydroxyl derivative, and sulfate addition to the lactone ring.
In gerbil adrenal cortex the activity of intramitochondrial NADP-linked isocitric dehydrogenase (IDH) is up to 10-fold greater than the NAD-linked IDH. The NADP-IDH, apparent Km 0.58 mM, Vmax 280 nmoles/min/mg mitochondrial protein, appears to be the major source of reducing equivalents to support adrenal mitochondrial steroid 11B- and 19-hydroxylation in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.