This paper presents an intraoperative MRI-guided, patient-mounted robotic system for shoulder arthrography procedures in pediatric patients. The robot is designed to be compact and lightweight and is constructed with nonmagnetic materials for MRI safety. Our goal is to transform the current two-step arthrography procedure (CT/x-ray-guided needle insertion followed by diagnostic MRI) into a streamlined single-step ionizing radiation-free procedure under MRI guidance. The MR-conditional robot was evaluated in a Thiel embalmed cadaver study and healthy volunteer studies. The robot was attached to the shoulder using straps and ten locations in the shoulder joint space were selected as targets. For the first target, contrast agent (saline) was injected to complete the clinical workflow. After each targeting attempt, a confirmation scan was acquired to analyze the needle placement accuracy. During the volunteer studies, a more comfortable and ergonomic shoulder brace was used, and the complete clinical workflow was followed to measure the total procedure time. In the cadaver study, the needle was successfully placed in the shoulder joint space in all the targeting attempts with translational and rotational accuracy of 2.07 ± 1.22 mm and 1.46 ± 1.06 degrees, respectively. The total time for the entire procedure was 94 min and the average time for each targeting attempt was 20 min in the cadaver study, while the average time for the entire workflow for the volunteer studies was 36 min. No image quality degradation due to the presence of the robot was detected. This Thiel-embalmed cadaver study along with the clinical workflow studies on human volunteers demonstrated the feasibility of using an MR-conditional, patient-mounted robotic system for MRI-guided shoulder arthrography procedure. Future work will be focused on moving the technology to clinical practice.
Objectives Essential Tremor (ET) is one of the most common neurologic conditions, and conservative measures are frequently suboptimal. Recent data from a multi-institution, randomized controlled clinical trial demonstrated that Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thalamotomy improves upper limb tremor in medically refractory ET. This study assesses the cost-effectiveness of this novel therapy in comparison to existing procedural options. Methods PubMed and Cochrane Library searches were performed for studies of MRgFUS, Deep Brain Stimulation (DBS), and Stereotactic Radiosurgery (SRS) for ET. Pre-and post-operative tremor-related disability scores were collected from 32 studies involving 83 MRgFUS, 615 DBS, and 260 SRS cases. Utility (defined as percent change in functional disability) was calculated, and Medicare reimbursements were collected as a proxy for societal cost -costs of MRgFUS for ET were derived from a combination of available costs of approved indications and SRS costs where appropriate. A decision and cost-effectiveness analysis was then constructed, implementing meta-analytic techniques. Results MRgFUS thalamotomy resulted in significantly higher utility scores compared with DBS and SRS based on estimates of Medicare reimbursement (p < 0.001). MRgFUS was also the most inexpensive procedure out of the three (p < 0.001). Conclusions Preliminary experience with MRgFUS for ET suggests that this novel therapeutic may be more effective than available alternatives and potentially less costly for society. It thus will likely "dominate" DBS and SRS as a more cost-effective option for medically refractory ET. Our findings support further investigation of MRgFUS for ET and broad adoption. Objectives The ventral intermediate nucleus (VIM) is not visible on conventional Magnetic Resonance Imaging (MRI).A novel method for tractography-based VIM identification has recently been described. We report the short-term clinical results of prospective VIM targeting with tractography in a cohort of patients undergoing Focused Ultrasound thalamotomy. Methods All patients underwent structural and diffusion weighted imaging (60 diffusion directions, 2 mm isovoxel) with 3 Tesla MRI scanner (Philips Ingenia CX). The images were processed using streamline tractography (Stealth Viz, Medtronic Inc.). The lateral and posterior borders of VIM were defined by tracking the pyramidal tract and medial lemniscus respectively. A VIM region of interest (ROI) was placed 3 mm away from these borders (Figs. 1, 2 and 3). The structural connectivity of this VIM ROI was confirmed to the motor cortex (M1) and cerebellum. The coordinates of tractography-based VIM in relation to posterior commissure were noted for surgical targeting. The parameters analyzed include a clinical tremor scale (pre-, intraoperative, and post operative), operative time, and number of sonications. Results Tractography-based VIM targeting was successful in 7 out of 8 patients. The coordinates of tractography-based VIM were significantly different from...
Background: The purpose of this work was to measure the essential acoustic parameters, i.e.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.