Subdural electrocorticographic (ECoG) recordings in patients undergoing epilepsy surgery have shown that functional activation is associated with event-related broadband gamma activity in a higher frequency range (>70 Hz) than previously studied in human scalp EEG. To investigate the utility of this high gamma activity (HGA) for mapping language cortex, we compared its neuroanatomical distribution with functional maps derived from electrical cortical stimulation (ECS), which remains the gold standard for predicting functional impairment after surgery for epilepsy, tumours or vascular malformations. Thirteen patients had undergone subdural electrode implantation for the surgical management of intractable epilepsy. Subdural ECoG signals were recorded while each patient verbally named sequentially presented line drawings of objects, and estimates of event-related HGA (80-100 Hz) were made at each recording site. Routine clinical ECS mapping used a subset of the same naming stimuli at each cortical site. If ECS disrupted mouth-related motor function, i.e. if it affected the mouth, lips or tongue, naming could not be tested with ECS at the same cortical site. Because naming during ECoG involved these muscles of articulation, the sensitivity and specificity of ECoG HGA were estimated relative to both ECS-induced impairments of naming and ECS disruption of mouth-related motor function. When these estimates were made separately for 12 electrode sites per patient (the average number with significant HGA), the specificity of ECoG HGA with respect to ECS was 78% for naming and 81% for mouth-related motor function, and equivalent sensitivities were 38% and 46%, respectively. When ECS maps of naming and mouth-related motor function were combined, the specificity and sensitivity of ECoG HGA with respect to ECS were 84% and 43%, respectively. This study indicates that event-related ECoG HGA during confrontation naming predicts ECS interference with naming and mouth-related motor function with good specificity but relatively low sensitivity. Its favourable specificity suggests that ECoG HGA can be used to construct a preliminary functional map that may help identify cortical sites of lower priority for ECS mapping. Passive recordings of ECoG gamma activity may be done simultaneously at all electrode sites without the risk of after-discharges associated with ECS mapping, which must be done sequentially at pairs of electrodes. We discuss the relative merits of these two functional mapping techniques.
Objective: To study the role of gamma oscillations (>30 Hz) in selective attention using subdural electrocorticography (ECoG) in humans. Methods:We recorded ECoG in human subjects implanted with subdural electrodes for epilepsy surgery. Sequences of auditory tones and tactile vibrations of 800 ms duration were presented asynchronously, and subjects were asked to selectively attend to one of the two stimulus modalities in order to detect an amplitude increase at 400 ms in some of the stimuli.Results: Event-related ECoG gamma activity was greater over auditory cortex when subjects attended auditory stimuli and was greater over somatosensory cortex when subjects attended vibrotactile stimuli. Furthermore, gamma activity was also observed over prefrontal cortex when stimuli appeared in either modality, but only when they were attended. Attentional modulation of gamma power began ∼400 ms after stimulus onset, consistent with the temporal demands on attention. The increase in gamma activity was greatest at frequencies between 80 and 150 Hz, in the so-called high gamma frequency range.Conclusions: There appears to be a strong link between activity in the high-gamma range (80-150 Hz) and selective attention.Significance: Selective attention is correlated with increased activity in a frequency range that is significantly higher than what has been reported previously using EEG recordings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.