The TOR protein kinases (TOR1 and TOR2 in yeast; mTOR/FRAP/RAFT1 in mammals) promote cellular proliferation in response to nutrients and growth factors, but their role in development is poorly understood. Here, we show that the Drosophila TOR homolog dTOR is required cell autonomously for normal growth and proliferation during larval development, and for increases in cellular growth caused by activation of the phosphoinositide 3-kinase (PI3K) signaling pathway. As in mammalian cells, the kinase activity of dTOR is required for growth factor-dependent phosphorylation of p70 S6 kinase (p70 S6K ) in vitro, and we demonstrate that overexpression of p70 S6K in vivo can rescue dTOR mutant animals to viability. Loss of dTOR also results in cellular phenotypes characteristic of amino acid deprivation, including reduced nucleolar size, lipid vesicle aggregation in the larval fat body, and a cell type-specific pattern of cell cycle arrest that can be bypassed by overexpression of the S-phase regulator cyclin E. Our results suggest that dTOR regulates growth during animal development by coupling growth factor signaling to nutrient availability.
The extra sex combs (ESC) and Enhancer of zeste [E(Z)] proteins, members of the Polycomb group (PcG) of transcriptional repressors, interact directly and are coassociated in fly embryos. We report that these two proteins are components of a 600-kDa complex in embryos. Using gel filtration and affinity chromatography, we show that this complex is biochemically distinct from previously described complexes containing the PcG proteins Polyhomeotic, Polycomb, and Sex comb on midleg. In addition, we present evidence that ESC is phosphorylated in vivo and that this modified ESC is preferentially associated in the complex with E(Z). Modified ESC accumulates between 2 and 6 h of embryogenesis, which is the developmental time when esc function is first required. We find that mutations in E(z) reduce the ratio of modified to unmodified ESC in vivo. We have also generated germ line transformants that express ESC proteins bearing site-directed mutations that disrupt ESC-E(Z) binding in vitro. These mutant ESC proteins fail to provide esc function, show reduced levels of modification in vivo, and are still assembled into complexes. Taken together, these results suggest that ESC phosphorylation normally occurs after assembly into ESC-E(Z) complexes and that it contributes to the function or regulation of these complexes. We discuss how biochemically separable ESC-E(Z) and PC-PH complexes might work together to provide PcG repression.
The extra sex combs (esc) and Enhancer of zeste [E(z)] proteins are members of the Drosophila Polycomb group (Pc-G) of transcriptional repressors. Here we present evidence for direct physical interaction between the esc and E(z) proteins using yeast two-hybrid and in vitro binding assays. In addition, coimmunoprecipitation from embryo extracts demonstrates association of esc and E(z) in vivo. We have delimited the escbinding domain of E(z) to an N-terminal 33-amino-acid region. Furthermore, we demonstrate that site-directed mutations in the esc protein previously shown to impair esc function in vivo disrupt esc-E(z) interactions in vitro. We also show an in vitro interaction between the heed and EZH1 proteins, which are human homologs of esc and E(z), respectively. These results suggest that the esc-E(z) molecular partnership has been conserved in evolution. Previous studies suggested that esc is primarily involved in the early stages of Pc-G-mediated silencing during embryogenesis. However, E(z) is continuously required in order to maintain chromosome binding by other Pc-G proteins. In light of these earlier observations and the molecular data presented here, we discuss how esc-E(z) protein complexes may contribute to transcriptional silencing by the Pc-G.
The Drosophila extra sex combs (esc) protein, a member of the Polycomb group (PcG), is a transcriptional repressor of homeotic genes. Genetic studies have shown that esc protein is required in early embryos at about the time that other PcG proteins become engaged in homeotic gene repression. The esc protein consists primarily of multiple copies of the WD repeat, a motif that has been implicated in protein-protein interaction. To further investigate the domain organization of esc protein, we have isolated and characterized esc homologs from divergent insect species. We report that esc protein is highly conserved in housefly (72% identical to Drosophila esc), butterfly (55% identical), and grasshopper (56% identical). We show that the butterfly homolog provides esc function in Drosophila, indicating that the sequence similarities reflect functional conservation. Homology modeling using the crystal structure of another WD repeat protein, the G-protein -subunit, predicts that esc protein adopts a -propeller structure. The sequence comparisons and modeling suggest that there are seven WD repeats in esc protein which together form a seven-bladed -propeller. We locate the conserved regions in esc protein with respect to this predicted structure. Site-directed mutagenesis of specific loops, predicted to extend from the propeller surface, identifies conserved parts of esc protein required for function in vivo. We suggest that these regions might mediate physical interaction with esc partner proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.