The endonucleolytic cleavage and polyadenylation of a pre-mRNA in mammalian cells requires two c/s-acting elements, a highly conserved AAUAAA hexamer and an amorphous U-or GU-rich downstream element, that together constitute the "core" poly(A) site. The terminal redundancy of the HIV-1 pre-mRNA requires that the processing machinery disregard a core poly(A) site at the 5' end of the transcript, and efficiently utilize an identical signal that resides near the 3' end. Efficient processing at the 3' core poly(A) site, both in vivo and in vitro, has been shown to require sequences 76 nucleotides upstream of the AAUAAA hexamer. In this report we demonstrate that this HIV-1 upstream element interacts directly with the 160-kD subunit of CPSF (cleavage polyadenylation specificity factor), the factor responsible for the recognition of the AAUAAA hexamer. The presence of the upstream element in the context of the AAUAAA hexamer directs the stable binding of CPSF to the pre-mRNA and enhances the efficiency of poly(A) addition in reactions reconstituted with purified CPSF and recombinant poly(A) polymerase. Our results indicate that the dependence of HIV-1 3' processing on upstream sequences is a consequence of the suboptimal sequence context of the AAUAAA hexamer. We suggest that poly(A) site definition involves the recognition of multiple heterogeneous sequence elements in the context of the AAUAAA hexamer.
The architecture of the human immunodeficiency virus type 1 (HIV‐1) genome presents an intriguing dilemma for the 3′ processing of viral transcripts‐‐to disregard a canonical ‘core’ poly(A) site processing signal present at the 5′ end of the transcript and yet to utilize efficiently an identical signal that resides at the 3′ end of the message. The choice of processing sites in HIV‐1 appears to be influenced by two factors: (i) proximity to the cap site, and (ii) sequences upstream of the core poly(A) site. We now demonstrate that an in vivo‐defined upstream element that resides within the U3 region, 76 nucleotides upstream of the AAUAAA hexamer, acts specifically to enhance 3′ processing at the HIV‐1 core poly(A) site in vitro. We furthermore show that efficient in vitro 3′ processing requires the RNA stem‐loop structure of TAR, which serves to juxtapose spatially the upstream element and the core poly(A) site. An analysis of the stability of 3′ processing complexes formed at the HIV‐1 poly(A) site in vitro suggests that the upstream element may function by increasing processing complex stability at the core poly(A) site.
Virus inactivation in red blood cell concentrates (RBCC) is being studied in order to increase the safety of the blood supply. For this purpose we have been studying the silicon phthalocyanine (Pc 4), a photosensitizer activated with red light. Two approaches were used to achieve enhanced selectivity of Pc 4 for virus inactivation. One was formulation of Pc 4 in liposomes that reduce its binding to red cells. The other was the use of a light emitting diode (LED) array emitting at 700 nm. Vesicular stomatitis virus (VSV) infectivity served as an endpoint for virus kill in treated RBCC. Red cell hemolysis and circulatory survival in rabbits served as measures for red cell damage. Treatment of small aliquots of human RBCC with 2 μM Pc 4 in liposomes and 10 J/cm2 of 700 nm LED light in the presence of the quenchers of reactive oxygen species glutathione and trolox resulted in 6 log10 inactivation of VSV. Under these conditions hemolysis of treated red cells stored at 4 °C for 21 days was only slightly above that of control cells. Rabbit RBCC similarly treated circulated with a half life of 7.5 days compared with 10.5 days of control. It is concluded that Pc 4 used as described here may be useful for viral decontamination of RBCC, pending toxicological and clinical studies. © 1999 Society of Photo-Optical Instrumentation Engineers.
The silicon phthalocyanine HOSiPcOSi(CH3)2(CH2)3 N(CH3)2 (Pc 4), is being studied as a photosensitizer for virus inactivation in red blood cell concentrates (RBCC). The RBCC spiked with cell-free human immunodeficiency virus (HIV) or with HIV actively replicating in the T-lymphocytic cell line CEM can be successfully inactivated (> or = 6 log10) when exposed to 2 microM Pc 4 and 90 J/cm2 red light (600-800 nm). Inactivation of > or = 6 log10 inducible HIV in the latently infected promonocytic cell line U1 occurred at 22.5 J/cm2 (H. Margolis-Nunno et al., Transfusion 36, 743-750, 1996). In order to understand the reason for the increased susceptibility of U1 to photosensitized inactivation we looked for induction of apoptosis by photodynamic treatment (PDT). Agarose gel electrophoresis was used to observe the appearance of a characteristic 180-200 base pair DNA ladder, which can indicate apoptosis. Using this assay it is shown that Pc 4 treatment induced apoptosis in U1 cells in a light dose-dependent manner, starting 30 min after light exposure. Using the ApopTag Plus kit (which attaches a fluorescent label to the 3'-OH ends of the degraded DNA) and flow cytometry, the percentage of cells undergoing apoptosis was quantitated. At 10.5 J/cm2, 3 h after light exposure, about 92.5% of the cells were apoptotic. Under these conditions 99% of the cells eventually die. The CEM cells similarly treated underwent apoptosis at slower kinetics and required higher light doses. Other cell lines latently infected with HIV (ACH-2 and OM 10.1) were as sensitive as U1 to HIV inactivation by Pc 4-PDT (H. Margolis-Nunno et al., Transfusion 36, 743-750, 1996) and underwent apoptosis at a similar kinetic. These results suggest that the enhanced inactivation of HIV in latently infected cells compared to CEM cells by Pc 4-PDT may be due, at least in part, to apoptosis in the former.
Pc 4 and red light are effective in eliminating the infectivity of HIV in red cell concentrates. The usefulness of this approach for blood banking depends on future demonstration of the preservation of red cell circulatory survival and function in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.