Bis(di-isobutyl octadecylsiloxy)silicon 2,3-naphthalocyanine (isoBOSINC) is a representative of a group of naphthalocyanine derivatives with spectral and photophysical properties that make them attractive candidates for photodynamic therapy (PDT). Tissue distributions were studied in normal and in tumor-bearing rats as a function of time following intravenous injection of isoBOSINC as a suspension in 10% Tween 80 in saline. The dose studied was 0.25 mg/kg of body weight. The compound isoBOSINC was isolated from several tissues and organs, as well as tumors and peritumoral muscles and skin, and quantitated by a high-performance liquid chromatographic technique. The tumor model, an N-(4-[5-nitro-2-furyl]-2-thiazolyl)formamide (FANFT)-induced urothelial cell carcinoma, was transplanted into the hind legs of Fischer 344 rats. The dye was retained in tumors at higher concentrations than in all tissues and organs examined, except for spleen and liver. The highest concentration ratio of dye in tumor versus peritumoral muscle (24.5) occurred 9 h after injection. Serum clearance of isoBOSINC showed similar kinetic behavior for both groups of rats, with a t 1/2 of elimination of approximately 10 h. At 7 and 14 days postinjection, the levels of dye found in testes were generally higher than in most other tissues, except spleen and liver. Concentrations of isoBOSINC were either very low or not detectable in rat brain. Trace amounts of the dye were excreted in the urine, and by day 14 approximately 17% of the dose was accounted for in the feces. The significant levels of the drug in tumors, as well as the excellent ratios of tumor-to-muscle concentration observed, have promising implications for PDT of tumors.
The silicon phthalocyanine, HOSiPcOSi(CH3)2(CH2)3N(CH3)2 (Pc 4), is a new photosensitizer that can inactivate lipid-enveloped viruses in red blood cell concentrates (RBCC) upon exposure to red light. Because Pc 4 is insoluble in water, it was delivered either as an emulsion in saline and cremophor EL (CRM) or as a solution in dimethyl sulfoxide (DMSO). In RBCC, Pc 4 added in either vehicle distributed between the plasma and red blood cells (RBC) in a ratio of 4:6, similar to the ratio of these components in RBCC 3:7 (i.e. a hematocrit of 70%). Light exposure did not affect this distribution and caused only marginal degradation of Pc 4 at a light dose that inactivates > 5 log10 vesicular stomatitis virus (VSV). Among human plasma proteins, Pc 4 bound mainly (about 70%) to lipoproteins and to a lesser extent to albumin and lower molecular weight proteins when delivered in DMSO. When delivered in CRM, distribution between lipoproteins and albumin became more even. Among the lipoproteins Pc 4 bound almost exclusively to very low-density lipoproteins (VLDL) when delivered in DMSO and to both VLDL and low-density lipoproteins when added in CRM. The rate of VSV inactivation was independent of the delivery vehicle but there was less RBC damage, as measured by hemolysis during storage, when Pc 4 was added in CRM. These results indicate that using CRM as emulsifier can enhance the specificity of Pc 4-induced photochemical decontamination of RBCC for transfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.