The development of fungal resistance to antifungal drugs has been worsening over the years and as a result research on new antifungal agents derived from plants has intensified. Eugenia uniflora L. (pitanga) has been studied for its various biological actions. In this study the chemical composition and antifungal effects of the E. uniflora essential oil (EULEO) were investigated against Candida albicans (CA), Candida krusei (CK) and Candida tropicalis (CT) standard strains. The essential oil obtained through hydro-distillation was analyzed by gas chromatography coupled to mass spectrometry (GC-MS). To determine the IC of the oil, the cellular viability curve and the inhibitory effects were measured by means of the oil's association with Fluconazole in a broth microdilution assay with spectrophotometric readings. The Minimum Fungicidal Concentration (MFC) was determined by solid medium subculture with the aid of a guide plate while the assays used to verify morphological changes emerging from the action of the fractions were performed in microculture chambers at concentrations based on the microdilution. Two major oil constituents stand out from the chemical analysis: selina-1,3,7(11)-trien-8-one (36.37%) and selina-1,3,7(11)-trien-8-one epoxide (27.32%). The concentration that reduced microorganismal growth was ≥8,192 μg/mL while the IC varied, this being between 1892.47 and 12491.80 μg/mL (oil), 10.07 - 80.78 μg/mL (fluconazole) and 18.53 - 295.60 μg/mL (fluconazole + oil). The combined activity (fluconazole + oil) resulted in indifference and antagonism. A MFC of the oil in association with fluconazole was recorded at the concentration of 8,192 μg/mL against CA and CK. The oil caused the inhibition of CA and CT morphological transition. In view of the results obtained, additional research is needed to elucidate the activity of the E. uniflora oil over genetic and biochemical processes regarding its effect on Candida spp. virulence.
The antibacterial activity and efflux pump reversal of thymol and carvacrol were investigated against the Staphylococcus aureus IS-58 strain in this study, as well as their toxicity against Drosophila melanogaster. The minimum inhibitory concentration (MIC) was determined using the broth microdilution method, while efflux pump inhibition was assessed by reduction of the antibiotic and ethidium bromide (EtBr) MICs. D. melanogaster toxicity was tested using the fumigation method. Both thymol and carvacrol presented antibacterial activities with MICs of 72 and 256 µg/mL, respectively. The association between thymol and tetracycline demonstrated synergism, while the association between carvacrol and tetracycline presented antagonism. The compound and EtBr combinations did not differ from controls. Thymol and carvacrol toxicity against D. melanogaster were evidenced with EC50 values of 17.96 and 16.97 µg/mL, respectively, with 48 h of exposure. In conclusion, the compounds presented promising antibacterial activity against the tested strain, although no efficacy was observed in terms of efflux pump inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.