As a renewable raw material, straw bale represents a sustainable way of construction with minimal environmental impact. This paper focused on life cycle impact assessment of load-bearing straw bale residential building. Product stage from raw materials extraction to manufacture of construction materials was considered in the assessment including seven variations of straw bale. Construction materials were evaluated due to IMPACT 2002+ method. Both midpoint and endpoint impact categories were included. The results showed the importance of straw bale origin. Ecosystem quality impact of straw from extensively cultivated pastures was twenty times higher than that of intensive crop production, thus making a significant difference to an overall score of the construction. Results showed advantage of straw as a construction material particularly when used locally. In addition, significant contributions of other construction materials were identified.
Abstract:In Slovakia, 35% of buildings are older than 50 years but most newer buildings built before 1990 have greater energy consumption. Some other countries also have similar problems. The growing importance of energy saving in buildings can be, in the case of new and old residential buildings (RB), achieved by lowering thermal energy consumption most often by application of polystyrene insulation on the external walls and roof and the exchange of wood window frames for PVC (polyvinyl chloride) windows. The novelty of the article for Slovakia and some other central European countries consists in using the life cycle assessment (LCA) method for the objective assessment of the environmental benefits of the selected systems of wall insulation, as well as of energy savings in various time intervals of insulation functionality (up to 20 years). LCA software SimaPro (LE Amersfoort, The Netherlands) was used with ReCiPe and IMPACT 2002+ assessment methods to quantify the total environmental impact at selected endpoints and midpoints (IMPACT 2002+) of basic structural materials of an RB and its energy demand-heat consumption (hot water heating, central heating) before the application of insulation and thermal energy saving (TES) after application of insulation to its external walls, roof, and the exchange of windows. The data we obtained confirmed that the environmental impact of the polystyrene insulation of external walls, roof, and exchange of windows of one residential building (RB) in the first year after insulation is higher than the reduction caused by achieving a TES of 39%. When taking a lifespan of 20 years into consideration, the impact over the life cycle of the building materials is reduced by 25% (global warming: −4792 kg CO 2 eq; production of carcinogens: −2479 kg C 2 H 3 Cl eq; acidification: −12,045 kg SO 2 eq; and aquatic eutrophication: −257 kg PO 4 P-lim). The verified LCA methodology will be used for comparative analysis of different variants of thermal insulation of buildings, and their functionality in the long term, while taking into account local specifics and the preparation of environmental product declarations.
This article presents the results of an investigation of acoustic and thermophysical properties of insulation panels made from recycled technical textiles originating from the automotive industry. Measurements were performed on the samples of insulation panels (Senizol AT XX2 TL60), which were modified with liquid flame retardants (ISONEM® ANTI-FIRE SOLUTION, ECOGARD® B45, HR Prof). Another method of treatment was carried out by surface application of non-flammable facing (woven carbon fibre, nonwoven carbon fibre). Retardants were applied to the samples by surface spraying and soaking. The results showed a high ability of material to absorb sound in the frequency range 350 Hz–2 kHz. The sound absorption coefficient ranged from 0.82 to 0.9 in the frequency range 500 Hz–2 kHz. The noise reduction coefficient is 0.75. After material modification with the flame retardants, there was no significant change of sound absorption. The thermal conductivity coefficient of material before modification was 0.038 W⋅m−1⋅K−1. After application of the flame retardants, the thermal conductivity coefficient increased depending on type and method of retardant application in the range of 2.6–105.3%. The smallest change was detected after modification of material with ECOGARD® B45.
The main objective of this paper thesis is to determine the environmental impact of two houses made of two alternative materials - a wooden and a brick house - using a Life Cycle Assessment (LCA). By comparing the material composition of their design to determine the environmental impacts of global warming, human health, consumption of resources and ecosystem quality. An overall comparison showed that the materials for the construction of a wooden house have less negative impact on the environment than materials for the construction of a brick house. Using the GWP method, results show that the materials for the construction of a brick house leave twice the carbon footprint in the environment than materials for a wooden house. This resultant state is mainly due to the use of natural materials in the wooden house (wood, fibre insulation), unlike the materials used in the brick house (ceramic masonry, insulation from stone wool) and so on.
This paper focused on the environmental performance of a nearly zero-energy wood-based educational building (NZEB-W) via the life cycle impact assessment (LCIA). It identifies the environmental impacts of construction materials and operational energy demands of the NZEB-W and compares them using the SimaPro 8 software with the IMPACT 2002+ method. The LCIA results from NZEB-W show that the overall environmental impact of construction materials (98.9 Pt) and 45 years operational energy demands (98.6 Pt) will be at the same level. Its overall environmental impact 197.75 Pt for 45 years is relatively small. NZEB-W has the greatest impact on the environment in the category of damage respiratory inorganics (34.5%), 419 kg PM2.5 eq from construction materials, and 271 kg PM2.5 eq from operational energy for 45 years; follows global warming (31.7%), 1.98 × 105 kg CO2 eq from construction materials, and 4.23 × 105 kg CO2 eq from operational energy for 45 years; and non-renewable energy (21.8%), 2.82 × 106 MJ primary from construction materials, and 3.73 × 106 MJ primary from operational energy for 45 years. As this environmental assessment shows, the material composition of construction materials compared to the energy consumption in the use phase is an essential element for understanding the life cycle impact of buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.