Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.
In order to evaluate the expected availability of a service, a network administrator should consider all possible failure scenarios under the specific service availability model stipulated in the corresponding service-level agreement. Given the increase in natural disasters and malicious attacks with geographically extensive impact, considering only independent single link failures is often insufficient. In this paper, we build a stochastic model of geographically correlated link failures caused by disasters, in order to estimate the hazards a network may be prone to, and to understand the complex correlation between possible link failures. With such a model, one can quickly extract information, such as the probability of an arbitrary set of links to fail simultaneously, the probability of two nodes to be disconnected, the probability of a path to survive a failure, etc. Furthermore, we introduce a pre-computation process, which enables us to succinctly represent the joint probability distribution of link failures. In particular, we generate, in polynomial time, a quasilinear-sized data structure, with which the joint failure probability of any set of links can be computed efficiently.
Abstract-Large-scale information dissemination in multicast communications has been increasingly attracting attention, be it through uptake in new services or through recent research efforts. In these, the core issues are supporting increased forwarding speed, avoiding state in the forwarding elements, and scaling in terms of the multicast tree size. This paper addresses all these challenges-which are crucial for any scalable multicast scheme to be successful-by revisiting the idea of in-packet Bloom filters and source routing. As opposed to the traditional in-packet Bloom filter concept, we build our Bloom filter by enclosing limited information about the structure of the tree. Analytical investigation is conducted and approximation formulas are provided for optimal-length Bloom filters, in which we got rid of typical Bloom filter illnesses such as false-positive forwarding. These filters can be used in several multicast implementations, which are demonstrated through a prototype. Thorough simulations are conducted to demonstrate the scalability of the proposed Bloom filters compared to its counterparts.
The rich club organization (the presence of highly connected hub core in a network) influences many structural and functional characteristics of networks including topology, the efficiency of paths and distribution of load. Despite its major role, the literature contains only a very limited set of models capable of generating networks with realistic rich club structure. One possible reason is that the rich club organization is a divisive property among complex networks which exhibit great diversity, in contrast to other metrics (e.g. diameter, clustering or degree distribution) which seem to behave very similarly across many networks. Here we propose a simple yet powerful geometry-based growing model which can generate realistic complex networks with high rich club diversity by controlling a single geometric parameter. The growing model is validated against the Internet, protein-protein interaction, airport and power grid networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.